首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
辽河盆地东部凹陷热历史及构造—热演化特征   总被引:9,自引:5,他引:9  
根据辽河盆地东部凹陷大地热流测量和镜质体反射率数据,恢复了该区的热历史,结果表明:东部凹陷热流呈现古热流高现今热流低的变化特征,沙河街组三段沉积期到东营组沉积期(距今43~25Ma)盆地热流为66~82mWm2,现今热流值为47~70mWm2。构造沉降史分析显示,盆地经历了早期的裂谷阶段(距今43~25Ma)和后期的热沉降阶段,裂谷阶段包含了两个裂谷亚旋回。盆地现今较低的大地热流和较高的古热流及典型的裂谷型构造沉降样式为东部凹陷的构造—热演化提供了重要认识。  相似文献   

2.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

3.
The mudstones in the third member of the Shahejie Formation (Es3) are the primary source rocks in the Banqiao Depression of Bohai Bay Basin. They are rich in organic matter with Total Organic Carbon (TOC) content up to 3.5%. The sandstones in the Es3 member are the deepest proven hydrocarbon reservoir rocks with measured porosity and permeability values ranging from 3.6% to 32.4% and from 0.01 md to 3283.7 md, respectively. One, two and three-dimensional basin modelling studies were performed to analyse the petroleum generation and migration history of the Es3 member in the Banqiao Depression based on the reconstruction of the burial, thermal and maturity history in order to evaluate the remaining potential of this petroleum province. The modelling results are calibrated with measured vitrinite reflectance (Ro), borehole temperatures and some drilling results of 63 wells in the study area. Calibration of the model with thermal maturity and borehole temperature data indicates that the present-day heat flow in the Banqiao Depression varies from 59.8 mW/m2 to 61.7 mW/m2 and the paleo-heat flow increased from 65 Ma to 50.4 Ma, reached a peak heat-flow values of approximately 75 mW/m2 at 50.4 Ma and then decreased exponentially from 50.4 Ma to present-day. The source rocks of the Es3 member are presently in a stage of oil and condensate generation with maturity from 0.5% to 1.8% Ro and had maturity from 0.5% to 1.25% Ro at the end of the Dongying Formation (Ed) deposition (26 Ma). Oil generation (0.5% Ro) in the Es3 member began from about 37 Ma to 34 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 30 Ma to 15 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Es3 member source rocks began from 31 Ma to 10 Ma with the peak hydrocarbon expulsion shortly after 26 Ma. Secondary petroleum migration pathways in the Es3 member of the Banqiao Depression are modelled based on the structure surfaces at 26 Ma and present-day, respectively. The migration history modelling results have accurately predicted the petroleum occurrences within the Es3 member of the Banqiao Depression based on the calibration with drilling results of 10 oil-producing wells, one well with oil shows and 52 dry holes. Six favorable zones of oil accumulations in the Es3 member of the Banqiao Depression are identified especially oil accumulation zones I and II due to their proximity to the generative kitchens, short oil migration distances and the presence of a powerful drive force.  相似文献   

4.
江汉盆地当阳复向斜当深3井实测地温剖面和样品热导率测试结果表明:其现今地温梯度为20~24℃/km,热流值为56mW/m2,体现了盆地发育于扬子稳定陆块的大地构造属性。基于7个磷灰石裂变径迹样品和大量镜质体反射率古温标数据进行的热史恢复表明,盆地构造—热演化经历了前印支期的低热流(50~60mW/m2)和小剥蚀量(50~200m),印支期的高热流(约80mW/m2)及燕山期与喜马拉雅期的低热流(50~60mW/m2)与大剥蚀量(1100~2400m)的不同演化阶段,反映了盆地和区域构造演化过程的阶段性。受沉积剥蚀及盆地构造—热演化的控制,生油岩系的生烃阶段与过程具有多期次的特征。  相似文献   

5.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

6.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   

7.
This article discusses the Meso–Cenozoic thermal history, thermal lithospheric thinning, and thermal structure of the lithosphere of the Bohai Bay Basin, North China. The present-day thermal regime of the basin features an average heat flow of 64.5 ± 8.1 mW m–2, a lithospheric thickness of 76–102 km, and a ‘hot mantle but cold crust’-type lithospheric thermal structure. The Meso–Cenozoic thermal history experienced two heat flow peaks in the late Early Cretaceous and in the middle to late Palaeogene, with heat flow values of 82–86 mW m?2 and 81–88 mW m?2, respectively. Corresponding to these peaks, the thermal lithosphere experienced two thinning stages during the Cretaceous and Palaeogene, reaching a minimum thickness of 43–61 km. The lithospheric thermal structure transformed from the ‘hot crust but cold mantle’ type in the Triassic–Jurassic to the ‘cold crust but hot mantle’ type in the Cretaceous–Cenozoic, according to the ratio of mantle to surface heat flow (qm/qs). The research on the thermal history and lithospheric thermal structure of sedimentary basins can effectively reveal the thermal regime at depth in the sedimentary basins and provide significance for the study of the basin dynamics during the Meso–Cenozoic.  相似文献   

8.
The GALO system is applied to the numerical reconstruction of burial and thermal histories of the West Bashkirian lithosphere from the Riphean to the present. An analysis of the variation in tectonic subsidence of the basin during its development is utilized to estimate approximately the mantle heat flow variations. Our variant of basin evolution suggests that after cooling in the Early Riphean, the rather weak thermal reactivations have not led to considerable heating of the lithosphere in the study region. Surface heat flow decreased from relatively high values in the Early Riphean (60–70 mW/m2 in the eastern area and 40–50 mW/m2 in the western part) to present-day values of 32–40 mW/m2. In spite of the relatively low temperature regime of the basin as a whole, a syn-rifting deposition of more than 10 km of limestone, shale and sandstone in the Riphean resulted in rather high temperatures (180–190 °C) at the base of present-day sedimentary blanket in the eastern area. In agreement with the observed data, computed present-day heat flow through the sediment surface increases slightly from 32 to 34 mW/m2 near the west boundary of the region to 42 mW/m2 near the boundary of the Ural Foldbelt, whereas the heat flow through the basement surface decreases slightly from 28–32 to 24–26 mW/m2 in the same direction. The mantle heat flow is only 11.3–12.7 mW/m2, which is considerable lower than mean heat flow of the Russian Platform (16–18 mW/m2) and comparable with the low heat flow of Precambrian shields.  相似文献   

9.
The Dniepr–Donets Basin (DDB) is a Late Devonian rift structure located within the East-European Craton. Numerical heat flow models for 13 wells calibrated with new maturity data were used to evaluate temporal and lateral heat flow variations in the northwestern part of the basin.The numerical models suggest that heat flow was relatively high during Late Carboniferous and/or Permian times. The relatively high heat flow is probably related to an Early Permian re-activation of tectonic activity. Reconstructed Early Permian heat flow values along the axial zone of the rift are about 60 mW/m2 and increase to 90 mW/m2 along the northern basin margin. These values are higher than those expected from tectonic models considering a single Late Devonian rifting phase. The calibration data are not sensitive to variations in the Devonian/Carboniferous heat flow. Therefore, the models do not allow deciding whether heat flows remained high after the Devonian rifting, or whether the reconstructed Permian heat flows represent a separate heating event.Analysis of the vitrinite reflectance data suggest that the northeastern Dniepr–Donets Basin is characterised by a low Mesozoic heat flow (30–35 mW/m2), whereas the present-day heat flow is about 45 mW/m2.  相似文献   

10.
Heat flow variations with depth in Europe can be explained by a model of surface temperature changes >10°C. New heat flow map of Europe is based on updated database of uncorrected heat flow values to which paleoclimatic correction is applied across the continent. Correction is depth dependent due to a diffusive thermal transfer of the surface temperature forcing of which glacial–interglacial history has the largest impact. It is obvious that large part of the uncorrected heat flow values in the existing heat flow databases from wells as shallow as few hundreds of meters is underestimated. This explains some very low uncorrected heat flow values 20–30 mW/m2 in the shields and shallow basin areas of the craton. Also, heat flow values in other areas including orogenic belts are likely underestimated. Based on the uncorrected and corrected heat flow maps using 5 km × 5 km grid, we have calculated average heat flow values (uncorrected heat flow: 56.0 mW/m2; SD 20.3 mW/m2 vs. corrected heat flow: 63.2 mW/m2; SD 19.6 m/Wm2) and heat loss for the continental part. Total heat loss is 928 E09 W for the uncorrected values versus corrected 1050 E09 W.  相似文献   

11.
Heat flow has been determined by combining temperature measurements in 7 boreholes with thermal conductivity measurements in the Upper Vindhyan sedimentary rocks of Shivpuri area, central India. The boreholes are distributed at 5 sites within an area of 15 × 10 km2; their depths range from 174 to 268 m. Geothermal gradients estimated from borehole temperature profiles vary from 8.0–12.7 mK m−1 in the sandstone-rich formations to 25.5–27.5 mK m−1 in the shale-rich formations, consistent with the contrast in thermal conductivities of the two rock types. Heat flow in the area ranges between 45 and 61 mW m−2, with a mean of 52±6 mW m−2. The heat flow values are similar to the >50 mW m−2 heat flow observed in other parts of the northern Indian shield. The heat flow determinations represent the steady-state heat flow because, the thermal transients associated with the initial rifting, convergence and sedimentation in the basin as well as the more recent Deccan volcanism that affected the region to the south of the basin would have decayed, and therefore, the heat flow is in equilibrium with the radiogenic heat production of the crust and the heat flow from the mantle. The present study reports the heat flow measurements from the western part of the Vindhyan basin and provides heat flow information for the Bundhelkhand craton for the first time. Radioelement (Th, U and K) abundances have been measured both in the sedimentary rocks exposed in the area as well as in the underlying basement granite-gneiss of Bundelkhand massif exposed in the adjacent area. Radioactive heat production, estimated from those abundances, indicate mean values of 0.3 μW m−3 for sandstone with inter-bands of shale and siltstone, 0.25 μW m−3 for sandstone with inter-bands siltstone, 0.6 μW m−3 for quartzose sandstone, and 2.7 μW m−3 for the basement granitoids. With a total sedimentary thickness not exceeding a few hundred metres in the area, the heat production of the sedimentary cover would be insignificant. The radioactive heat contribution from the basement granitoids in the upper crust is expected to be large, and together with the heat flow component from the mantle, would control the crustal thermal structure in the region.  相似文献   

12.
Kuqa foreland depression of the Tarim Basin is one of the largest gas production provinces in China. Thermal history reconstruction using vitrinite reflectance data indicates that the palaeo-heat flow in Kuqa depression was relatively high (50–55 mW/m2) during the Mesozoic, but gradually decreased during the Cenozoic to reach the present value of 40–50 mW/m2. The cooling of the Kuqa depression is probably attributed to the crust thickening and the rapid sedimentary rate. The Jurassic source rocks entered conventional oil window at 100 Ma, and began to generate gas at approximately 75 Ma in the Kelasu area. Thermal maturation of the Jurassic source rocks accelerated significantly since 23.3 Ma, especially in the recent 5.2 Ma. In this foreland depression, source rock maturation, which is likely controlled mainly by burial history, also influenced by the presence of fault thrusting and salt-bearing formations.  相似文献   

13.
Tectonically active Vindhyan intracratonic basin situated in central India, forms one of the largest Proterozoic sedimentary basins of the world. Possibility of hydrocarbon occurrences in thick sediments of the southern part of this basin, has led to surge in geological and geophysical investigations by various agencies. An attempt to synthesize such multiparametric data in an integrated manner, has provided a new understanding to the prevailing crustal configuration, thermal regime and nature of its geodynamic evolution. Apparently, this region has been subjected to sustained uplift, erosion and magmatism followed by crustal extension, rifting and subsidence due to episodic thermal interaction of the crust with the hot underlying mantle. Almost 5–6 km thick sedimentation took place in the deep faulted Jabera Basin, either directly over the Bijawar/Mahakoshal group of mafic rocks or high velocity-high density exhumed middle part of the crust. Detailed gravity observations indicate further extension of the basin probably beyond NSL rift in the south. A high heat flow of about 78 mW/m2 has also been estimated for this basin, which is characterized by extremely high Moho temperatures (exceeding 1000 °C) and mantle heat flow (56 mW/m2) besides a very thin lithospheric lid of only about 50 km. Many areas of this terrain are thickly underplated by infused magmas and from some segments, granitic–gneissic upper crust has either been completely eroded or now only a thin veneer of such rocks exists due to sustained exhumation of deep seated rocks. A 5–8 km thick retrogressed metasomatized zone, with significantly reduced velocities, has also been identified around mid to lower crustal transition.  相似文献   

14.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   

15.
Terrestrial heat flow is an important physical parameter in the study of heat transfer and thermal structure of the earth and it has great significance in the genesis and development and utilization potential of regional geothermal resources. Although several breakthroughs in geothermal exploration have been made in Guizhou Province. The terrestrial heat flow in this area has not been properly measured, restricting the development of geothermal resources in the province. For this reason, the terrestrial heat flow in Guizhou was measured in this study, during which the characteristics of heat flow were determined using borehole thermometry, geothermal monitoring and thermal property testing. Moreover, the influencing factors of the terrestrial heat flow were analyzed. The results show that the thermal conductivity of rocks ranges from 2.0 W/(m·K) to 5.0 W/(m·K), with an average of 3.399 W/(m·K); the heat flow varies from 30.27 mW/m2 to 157.55 mW/m2, with an average of 65.26 ± 20.93 mW/m2, which is slightly higher than that of the average heat flow in entire land area in China. The heat flow in Guizhou generally follows a dumbbell-shaped distribution, with high values present in the east and west and low values occurring in the north and south. The terrestrial heat flow is related to the burial depths of the Moho and Curie surface. The basaltic eruptions in the Emeishan led to a thinner lithosphere, thicker crust and lateral emplacement, which dominated the basic pattern of heat flow distribution in Guizhou. In addition, the dichotomous structure of regional active faults and concealed deep faults jointly control the heat transfer channels and thus influence the terrestrial heat flow.  相似文献   

16.
The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr–Nd–Pb isotopic compositions and zircon Pb–Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb–Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive εNd(t) values (up to +7.4) and low initial 87Sr/86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes.  相似文献   

17.
In the complex structural framework of the Western Mediterranean. Hercynian areas are expected to be thermally preserved from the recent tectonic evolution. The thermal regime of these areas is studied using heat flow, heat production and fission track data. The surface heat flow is significantly higher in Corsica (76 ± 10 mW m−2) than in the Maures and Estérel (58 ± 2 mW m−2). Neither heat production nor erosion subsequent to the Alpine orogeny in Corsica can explain such a difference. It is suggested that a deep thermal source related to the asymmetric evolution of the Provençal basin could explain the higher heat flow in Corsica. A model of thermal structure based on the present day thermal regime of the Maures and Estérei is proposed for the stable Hercynian crust in this area. The mantle heat flow is 20–25 mW m−2 and the temperature at Moho level is 375–500°C, depending on the thermal parameter distribution with depth.  相似文献   

18.
Jeffrey Poort  Jan Klerkx   《Tectonophysics》2004,383(3-4):217-241
Heat flow in active tectonic zones as the Baikal rift is a crucial parameter for evaluating deep anomalous structures and lithosphere evolution. Based on the interpretation of the existing datasets, the Baikal rift has been characterized in the past by either high heat flow, or moderately elevated heat flow, or even lacking a surface heat flow anomaly. We made an attempt to better constrain the geothermal picture by a detailed offshore contouring survey of known anomalies, and to estimate the importance of observed heat flow anomalies within the regional surface heat output. A total of about 200 new and close-spaced heat flow measurements were obtained in several selected study areas in the North Baikal Basin. With an outrigged and a violin-bow designed thermoprobe of 2–3-m length, both the sediment temperature and thermal conductivity were measured. The new data show at all investigated sites that the large heat flow highs are limited to local heat flow anomalies. The maximum measured heat flow reaches values of 300–35000 mW/m2, but the extent of the anomalies is not larger than 2 to 4 km in diameter. Aside of these local anomalies, heat flow variations are restricted to near background values of 50–70 mW/m2, except in the uplifted Academician zone. The extent of the local anomalies excludes a conductive source, and therefore heat transport by fluids must be considered. In a conceptual model where all bottom floor heat flow anomalies are the result of upflowing fluids along a conduit, an extra heat output of 20 MW (including advection) is estimated for all known anomalies in the North Baikal Basin. Relative to a basal heat flow of 55–65 mW/m2, these estimations suggest an extra heat output in the northern Lake Baikal of only 5%, corresponding to a regional heat flow increase of 3 mW/m2. The source of this heat can be fully attributed to a regional heat redistribution by topographically driven ground water flow. Thus, the surface heat flow is not expected to bear a signal of deeper lithospheric thermal anomalies that can be separated from heat flow typical for orogenically altered crust (40–70 mW/m2). The new insights on the geothermal signature in the Baikal rift once more show that continental rifting is not by default characterized by high heat flow.  相似文献   

19.
Detailed studies of terrestrial heat flow in southern and central Alberta estimated on the basis of an order of magnitude larger data base than ever used before (33653 bottom-hole temperature data from 18711 wells) and thermal conductivity values based on detailed rock studies and measured rock conductivities show significant regional and local variations and variations with depth. Heat flow values were estimated for each 3 × 3 township/range area (28.8 × 28.8 km). A difference in heat flow exists between Paleozoic and Mesozoic strata. Generally lower heat flow values are observed in the strata above the Paleozoic erosional surface (20–75 mW m−2). Much higher values are estimated for the Younger Paleozoic formations, with large local and regional variations between 40 and 100 mW m−2.Average heat flow values based on heat flow determinations below and above the Paleozoic surface that agree within 20% show an increase from values less than 40 mW m−2 in southern and southwestern Alberta to values as high as 70 mW m−2 in central Alberta. The predominance of regional downward groundwater flows in Mesozoic strata seem to be responsible for the generally observed heat flow increase with depth.The results show that the basin heat flow pattern is influenced by water movement and even careful detailed heat flow measurements will not give correct values of background steady-state heat flow within the sedimentary strata.  相似文献   

20.
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan–Pulgaon and Ujjan–Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north–south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha–Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to ∼23 mW/m2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号