首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HP rocks (eclogites and granulites) occur in the upper unit of the western Iberian allochthonous complexes in Spain and Portugal. This HP metamorphism was considered as Early Variscan or Ordovician in Spain and Precambrian in Portugal. We have dated eclogites retrogressed into granulites in the Bragança massif in NE Portugal by U–Pb on rutile and zircon. The upper intercept of the discordia gives 390±4 Ma that we consider as the age of the HP/HT metamorphism.  相似文献   

2.
In the Marvejols area (Southern french Massif Central), the gneissic Marvejols supergroup is overthrust on the metasedimentary “Série du Lot”, deposited in part prior to 540 Ma. The allochtonous terranes are characterized by the occurrence of a leptyno-amphibolitic group, a complex association of mafic and felsic rocks of igneous and sedimentary derivation. A 480±10 Ma age has been obtained by U-Pb dating of zircons, for the crystallization of both mafic and felsic meta-igneous rocks. These rocks were emplaced during an important extensional tectonics. Relics of eclogites, pyrigarnites, coronite gabbros and HP-trondhjemites are clear evidence for a further HP-HT event dated at 415±6 Ma on zircons from a HP trondhjemite. Subsequently, the Marvejols supergroup underwent an amphibolite facies metamorphism with incipient mobilization dated at 345±10 Ma. Rifting and thinning of the continental crust in Cambro-Ordovician times appears to be a major geodynamic feature which could account for the thermal events often referred to the “Caledonian” orogeny. The Silurian (415 Ma) age of the HP episode is clearly older than the main Variscan tectonometamorphic event; it is in agreement with Rb-Sr dating of the Moldanubian granulites and with some radiometric data from Southern Brittany (France). These results point to a compressive phase, probably in a subduction context, in view of the high pressures reached (15–20 Kb), after the Cambro-Ordovician distensive phase. The main final tectono-metamorphic paroxysm (blocking of subduction process and continental collison ?) is not prior to the end of Devonian (340–350 Ma) and is related to the Variscan orogeny s.s  相似文献   

3.
Sm-Nd isotope tracer techniques are powerful tools in identification of the protolith nature of UHP and HP rocks and can be used to constrain modeling of tectonic processes of continental collision. UHP rocks may have diverse origins, and not all of them carry the same significance for subduction of continental blocks. In this paper, Sm-Nd isotopic data are compiled for UHP and HP rocks, mostly represented by eclogites and garnet peridotites, from the Alpine, Hercynian (Variscan), and Caledonian belts of western Europe; the Pan-African belts of northern Africa; and the Ross belt of Antarctica. These data then are compared with the isotopic characteristics of the UHP rocks from the Dabie orogen of central China. Except for the coesite-bearing quartzitic metasediments of Dora-Maira (Western Alps), which are clearly of continental origin, all HP and UHP rocks (eclogites and ultramafic rocks) from the Alpine, Hercynian, and Pan-African belts have oceanic affinities with the characteristic positive εNd(T) values (= metamorphic initial 143Nd/144Nd ratios). They represent segments of oceanic lithosphere that were subducted, underwent eclogite-facies metamorphism, and later were tectonically transported into orogenic zones during continental collisions. By contrast, the majority of UHP rocks from the European Caledonide and the Dabie orogen have negative εND(T) values, indicating continental affinity. This suggests that these mafic and ultramafic rocks have had a long crustal residence time and that their UHP metamorphism is indicative of subduction of ancient and cold continental blocks, as represented by some Precambrian gneiss terranes containing mafic components including greenschists, amphibolites, or basic granulites.

In the Dabie orogen, none of the UHP eclogites analyzed thus far have shown oceanic affinity; thus they do not represent subducted Tethys Ocean crust. The preservation of ultrahigh εND(0) values (+170 to +260) in eclogites of very low Nd concentrations (average 0.5 ppm) from the Weihai region and of the extraordinarily low δ18O in many eclogites and gneisses, the general absence of syntectonic granites in the Dabie Shan, and the available age data obtained by different techniques all point to a rapid rate of exhumation and the absence of a pervasive aqueous fluid phase during the entire process of subduction and exhumation of the Dabie UHP terrane.  相似文献   

4.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

5.
We present new U/Pb and Pb/Pb radiometric age data from two tectono-stratigraphic units of the regionally extensive Bolu Massif, in the W Pontides (İstanbul Fragment), N Turkey. A structurally lower unit (Sünnice Group) is cut by small meta-granitic intrusions, whereas the structurally higher unit comprises meta-volcanic rocks (Çaşurtepe Fm) cut by meta-granitic plutons (Tüllükiriş and Kapıkaya plutons). U/Pb single-crystal dating of zircons from the Kapıkaya Pluton yielded a concordant cluster, with a mean 238U/206Pb age of 565.3 ± 1.9 Ma. Zircons from the Tüllükiriş Pluton (affected by Pb loss) gave a 207Pb/206Pb age of 576 ± 6 Ma age (Late Precambrian). Small meta-granitic intrusions cutting the Sünnice Group yielded a less precise 207Pb/206Pb age of 262 ± 19 Ma (Early Permian). The older ages from the Bolu Massif confirm the existence of latest Precambrian arc magmatism related to subduction of a Cadomian ocean. We infer that the Bolu Massif represents a fragment of a Cadomian active margin. Cadomian orogenic units were dispersed as exotic terranes throughout the Variscan and Tethyan orogens, and the Bolu Massif probably reached its present position prior to latest Palaeozoic time. Our dating results also confirm that NW Turkey was affected by Hercynian magmatism related to subduction of Palaeotethys, as inferred for other areas of the Pontides.  相似文献   

6.
张泽明  董昕  贺振宇  向华 《岩石学报》2013,29(5):1713-1726
喜马拉雅造山带是印度与亚洲大陆碰撞作用的产物,正在进行造山作用,是研究板块构造的天然实验室.高压和超高压变质岩分布在喜马拉雅造山带的核部.这些变质岩具有不同的形成条件、形成时间和形成过程,为印度与亚洲碰撞带的几何学、运动学和动力学提供了重要的限定.含柯石英的超高压变质岩产出在喜马拉雅造山带的西段,它们形成在古新世与始新世之间(53~46Ma),为印度大陆西北边缘高角度超深俯冲作用的产物,并经历了快速俯冲与快速折返过程.在约5 Myr内,超高压变质岩从>100km的地幔深度折返到了中地壳深度,且仅仅叠加角闪岩相退变质作用.高压榴辉岩产出在喜马拉雅造山带中段,形成时间约为45Ma,为印度大陆低角度深俯冲作用的产物,经历了至少20Myr的长期折返过程,叠加麻粒岩相退变质作用和部分熔融.高压麻粒岩产出在喜马拉雅造山带的东端,是印度大陆东北缘近平俯冲作用的产物,峰期变质作用时间约为35Ma,经历了约20Myr的长期折返过程,叠加了麻粒岩相和角闪岩相退变质作用,并伴随有多期部分熔融.因此,喜马拉雅造山带的变质作用具有明显的时间与空间变化,显示出大陆深俯冲与折返过程的差异性,以及大陆碰撞造山带形成机制的多样性.  相似文献   

7.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

8.
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ).  相似文献   

9.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

10.
Critical but controversial problems in the study of UHP metamorphic rocks from the Dabie-Sulu region include: (1) the possible existence of ophiolitic mélange; (2) the “in situ” versus “foreign” origin of UHP eclogites and their enclosing gneisses; (3) the possible presence and role of fluids during ultrahigh-pressure (UHP) recrystallization; (4) the timing of collision between the Yangtze and Sino-Korean continental blocks; (5) the polarity of syncollisional subduction; and (6) a single-versus multistage exhumation scenario for the UHP rocks. These questions are discussed in light of new geological, geochemical, and isotopic constraints.

Our conclusions for the Dabie-Sulu belt are as follows: (1) Mafic-ultramafic blocks are of two distinct origins: one group samples lithosphere of the suprasubductionzone mantle wedge, whereas the second group represents postcollisional magmatic intrusions. Neither lithologic group represents true oceanic crust. (2) Quartzofeldspathic gneisses enveloping the eclogites are of two types— metasedimentary “in situ” and igneous “foreign.” The paragneisses contain UHP garnets + white micas, and are uniformly older (235 ± 5 Ma) than the orthogneisses (210 ± 5 Ma), which are devoid of UHP mineralogic indicators. (3) Fluids were active under UHP conditions and allowed the formation of UHP hydrous phases such as phengite and zoisite. However, the aqueous fluids may have been restricted to certain channels/pathways during exhumation. External fluids were absent until ascent of the UHP rocks to middle-crustal levels. (4) The Yangtze and Sino-Korean continental blocks collided during 230 to 240 Ma, when supracontinental rocks experienced UHP metamorphism. The HP metamorphic event dated as >400 Ma might record a subduction of oceanic crust during the Paleozoic. (5) An ancient mantle wedge is revealed by geochemical characteristics of Mesozoic magmatic rocks developed on the southern margin of the Sino-Korean craton, the hanging wall of the UHP-rock-bearing unit. Seismic tomography images reveal that the Yangtze block extends beneath the Dabie-Sulu orogenic belt. This indicates that both oceanic and continental crust had a northward subduction polarity. (6) Taking petrologic and geochronological data into account, we prefer a multistage exhumation model. The UHP rocks were exhumed rapidly during the first stage (230 to 200 Ma), perhaps reflecting a corner-flow mechanism. Then, buoyancy and mantle upwelling brought the UHP rocks up to middle-crustal levels during the second stage (200 to 170 Ma). Extension and thermal uplift, as well as erosion, eventually exposed the UHP rocks to the surface in the third stage (170 to 120 Ma).  相似文献   

11.
High‐pressure (HP) metabasites from the Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better understand the origin and evolution of the Northern Caribbean boundary plate during the Cretaceous, in a global subduction context. Geochemical and petrological studies of these eclogites reveal two groups with contrasting origins and pre‐subduction metamorphic histories. Eclogites collected from exotic blocks within serpentinite (mélange zone) originated from a N‐MORB type protolith, do not record pre‐eclogitic metamorphic history. Conversely eclogites intercalated in Jurassic metasedimentary rocks (non‐mélange zone) have a calc‐alkaline arc‐like origin and yield evidence for a pre‐subduction metamorphic event in the amphibolite facies. However, all the studied Escambray eclogites underwent the same eclogitic peak (around 600 °C at 16 kbar), and followed a cold thermal gradient during their exhumation (estimated at around 13.5 °C km?1), which can suggest that this exhumation was coeval with subduction. Concordant geochronological data (Rb/Sr and Ar/Ar) support that the main exhumation of HP/LT rocks from the Sancti Spiritus dome occurred at 70 Ma by top to SW thrusting. The retrograde trajectory of these rocks suggests that the north‐east subduction of the Farallon plate continued after 70 Ma. The set‐off to the exhumation can be correlated with the beginning of the collision between the Bahamas platform and the Cretaceous island arc that induced a change of the subduction kinematics. The contrasting origin and ante‐subduction history of the analysed samples imply that the Escambray massif consists of different geological units that evolved in different environments before their amalgamation during exhumation to form the present unit III of the massif.  相似文献   

12.
张泽明  丁慧霞  董昕  田作林 《地球科学》2019,44(5):1602-1619
印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50Ma、45~47Ma和35~40Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为>2.1GPa和>750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.  相似文献   

13.
Analyses of coexisting garnets, clinopyroxenes and plagioclases from eclogites and high pressure granulitic gneisses in the Kristiansund area within the west Norwegian basal gneiss region are used to establish the P-T conditions for the metamorphic peak for these rocks. Based on the distribution of Fe and Mg between coexisting garnet and clinopyroxene in both eclogite and granulites, equilibrium temperatures are estimated to 750 °±50 ° C. Pressures are derived from the absence of orthopyroxenes in the granulites, and from the assemblage clinopyroxene +plagioclase+quartz present in the gneisses. Equilibrium pressures are estimated to 18.5±3.0 kilobars, and these equilibrium conditions are thus compatible with equilibrium conditions derived for both orthopyroxene-free and most orthopyroxene-bearing country-rock eclogites from adjacent areas.  相似文献   

14.
Detailed geological mapping, structural, petrological and chronological investigation allow us to place new constraints on the tectono‐thermal evolution of the North Qilian high pressure/low temperature (HP/LT) metamorphic belt. The North Qilian HP/LT metamorphic belt manly consists of eclogite, blueschist, metasedimentary rocks and serpentinite. Most of eclogites and mafic blueschists occur as lenses within metasedimentary rocks, and minor eclogites within serpentinite. Petrological and geochemistical data indicate that the protoliths of eclogite and mafic blueschist includes E‐, N‐MORB, OIB and arc basalt. Geochronology and Lu‐Hf isotope of detrital zircons from metasedimentary rocks indicate the detritus materials are derived from Qilian block and likely deposit in continental margin or fore‐arc basin. Zircon U‐Pb datings show that the protolith ages of eclogites vary between 500 Ma and 530 Ma, and the metamorphic age of eclogite between 460 and 489 Ma. The detrital zircon ages of metasedimentary rocks distribute between 532 and 2700 Ma. The structural data show that the deformation related to the subduction during prograde is recorded in eclogite blocks. In contrast, the dominant deformation structures are characterized by tight fold, sheath fold and penetrative foliation and lineation, which are recorded in various rocks, reflecting a top‐to‐the‐south shear sense and representing the deformation related to the exhumation. The petrological data suggest that the different rocks in the North Qilian HP/LT metamorphic belt equilibrated at different peak metamorphic conditions and recorded different P‐T path. Synthesizing the structural, petrological, geochemical and geochronological data suggest a subduction channel model related to oceanic subduction during Paleozoic in the North Qilian Mountains. The different HP/LT metamorphic rocks formed in different settings with various protolith ages were carried by the subducted oceanic crust into different depth in subduction channel, and experienced independent tectono‐thermal evolution inside subduction channel. The North Qilian HP/LT mélange reflects a fossil oceanic subduction channel.  相似文献   

15.
Two high-grade gneissic complexes of the Western Sudetes, the Góry Sowie Block and the Śnieżnik area complex, contain small, predominantly felsic granulitic inliers with minor Cpx-bearing intercalations. The P–T  conditions of the granulite facies events and of the subsequent re-equilibration are estimated using the ternary feldspar thermometer and the Geo-Calc computer program (version TWQ, Jan 92).
In the Góry Sowie granulites, the peak granulitic event occurred at c . 18–20 kbar and 900 °C, and the late decompressive re-equilibration within a range of 4–10 kbar and temperatures decreasing to 600–700 °C. The latter event is thought to have coincided with the main metamorphic phase in the surrounding gneisses.
The P–T  estimates are more scattered in the Śnieżnik granulites, but the peak conditions for the granulitic event are estimated at pressure over 22 kbar (possibly around 30 kbar) and temperature exceeding 900 °C. The analysed samples from the Śnieżnik area bear no significant evidence of lower-pressure re-equilibration.
Integrating the thermobarometric data and some age constraints indicates that the Góry Sowie granulites belong to the early stage 'type I' granulites of the Variscan Belt ( c . 400 Ma old), which are interpreted as fragments of continental crustal materials subducted to mantle depths in the earliest stages of the Variscan orogeny. The Śnieżnik granulites are more problematic; they may belong to a 'younger high- P suite' ( c . 350 Ma old), widespread in the southern and eastern parts of the Bohemian Massif, and possibly related to the climax of the Variscan continent–continent collision.  相似文献   

16.
张修政  董永胜  王强  但卫 《地质通报》2018,37(8):1406-1416
羌塘中部高压变质带是目前青藏高原内部延伸规模最大的高压变质带,是理解特提斯演化的关键地质记录。高压变质带主要沿龙木措-双湖-澜沧江缝合带一线出露,主要由榴辉岩、蓝片岩、石榴子石多硅白云母片岩及少量高压麻粒岩组成。其中,榴辉岩主要出露于戈木、果干加年山、冈玛错、巴青及滇西的勐库地区,主要呈透镜状产于石榴子石多硅白云母片岩中。除巴青地区的榴辉岩外,其余地区榴辉岩的峰期变质温度较低且含有硬柱石及其假象,峰期变质条件位于硬柱石榴辉岩相稳定区域,是洋壳冷俯冲的产物。虽然对于戈木地区榴辉岩锆石成因仍有争议,但已有资料显示,羌塘中部高压变质带主体变质时代集中在晚三叠世,其相关高压变质岩石的折返可能与洋盆的闭合及随后的陆-陆碰撞相关。近期研究表明,羌塘中部可能存在二叠纪低温高压变质岩,折返于大洋俯冲阶段,可能与洋岛或海山的俯冲及引发的俯冲侵蚀作用相关。此外,羌塘香桃湖地区出露早古生代的基性高压麻粒岩,是冈瓦纳大陆北缘陆块拼贴的记录。因此,对羌塘中部高压变质带进行进一步系统的研究工作,对于深入理解冈瓦纳北缘构造演化及古特提斯的俯冲与闭合过程具有重要的意义。  相似文献   

17.
The Variscan Erzgebirge represents an antiform with a core of gneisses and mica schists, surrounded by a phyllitic mantle. The Gneiss-Eclogite Unit (GEU), in the central part, is a composite tectonometamorphic assemblage characterized by a HP-HT imprint and comprises migmatitic para- and orthogneisses, HT mylonites, HP granulites, eclogites and garnet peridotites. It is tectonically sandwiched between two major units with distinctly lower PT histories. The GEU experienced a characteristic “kinked” retrograde PT path after HP-HT equilibration with: (1) strong near-isothermal decompression at high temperatures; (2) extensive re-equilibration at medium pressures, followed (3) by rapid cooling during continued uplift. We dated zircons (Pb-Pb evaporation) from granitoid orthogneisses and metapelites of the GEU. The orthogneisses contain euhedral, long-prismatic zircons of igneous origin that provided protolith ages between 470 and 524 Ma. Metapelites retain well-preserved granulite-facies mineral assemblages and contain spherical, multifaceted metamorphic zircons that grew near the peak of HP/HT metamorphism. Inclusions of prograde HP phengite (∼15 kbar) and rutile are included in one such zircon. Metamorphic zircons of three samples from different localities yielded identical 207Pb/206Pb ages of 340.5 ± 0.7 Ma, 341.2 ± 0.5 Ma and 341.6 ± 0.5 Ma respectively. Consideration of these zircon ages with published 39Ar/40Ar white mica ages suggests fast cooling and uplift rates in excess of 50 °C/Ma and 4 km/Ma. This is typical for large-scale extensional tectonic unroofing of the ultra-deep part of a fossil, thickened Variscan continental crust (>60 km) during continuing continental collision and orogenic collapse. Received: 5 June 1997 / Accepted: 7 January 1998  相似文献   

18.
A low-angle thrust fault places high-PT granulites (hangingwall) of the Internal Zone of the Neoproterozoic Brasília Belt (Tocantins Province, central Brazil) in contact with a lower-grade footwall (External Zone) comprised of nappes of distal passive margin- and back-arc basin-related supracrustals. The footwall units were emplaced at  750 Ma onto proximal sedimentary rocks (Paranoá Group) of the São Francisco paleo-continent passive margin. The high-PT belt is comprised of 645–630 Ma granulite-facies paragneiss and orthogneiss, and mafic–ultramafic complexes that include three major layered intrusions and metavolcanic rocks granulitized at  750 Ma. These complexes occur within lower-grade metasedimentary rocks in the hangingwall of the Maranhão River Thrust, which forms the Internal Zone–External Zone boundary fault to the north of the Pirineus Zone of High Strain. Detailed lithostructural studies carried out in Maranhão River Thrust hangingwall and footwall metasedimentary rocks between the Niquelândia and Barro Alto complexes, and also to the east of these, indicate the same lithotypes and Sm–Nd isotopic signatures, and the same D1D2 progressive deformation and greenschist-facies metamorphism. Additionally, footwall metasedimentary rocks exclusively display a post-D2 deformation indicating that the Maranhão River Thrust propagated through upper crustal rocks of the Paranoá Group relatively late during the tectonic evolution of the belt. Fault propagation was a consequence of intraplate underthrusting during granulite exhumation. The results allow for a better tectonic understanding of the Brasília Belt and the Tocantins Province, as well as explaining the presence of the Pirineus Zone of High Strain.  相似文献   

19.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

20.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号