首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present a study of the magnetospheric cusp response to extreme external parameters during passage of the ICME over the Earth on 10 November 2004, based on Cluster observations of the plasma properties inside the low-latitude boundary layer (LLBL)/cusp regions. Two separate events are observed while Cluster is in the dawn sector, 07 – 08 h magnetic local time (MLT). First, a LLBL/cusp crossing occurs during a period of strong southward IMF. During this time, the LLBL/cusp is very small, ∼0.8 – 1° invariant latitude (ILAT) and moves equatorward, down to 67° ILAT. This can be explained by the occurrence of significant magnetopause erosion due to enhanced dayside sub-solar reconnection. The energy of the plasma inside this region is higher than normal, and the low-energy cut-off often observed in the ion data is also unusually high. This might be explained by the suggestion that the local magnetosheath Alfvén velocity and deHoffmann – Teller velocity are also both extremely high. However, the plasma convection and parallel velocity inside this region are not very high. The second event discussed in this paper is a LLBL/cusp crossing during strong equatorial IMF (mostly due to the dominant dawn – dusk component). Under these conditions, occurring at the same time as pulses of solar wind dynamic pressure, the observations are very complicated. However, we suggest that in the polar region of the southern hemisphere, Cluster cross two LLBLs/cusps, spatially separated by polar cap plasma. The first LLBL/cusp is formed by anti-parallel reconnection in the dusk sector of the southern hemisphere and the second is formed by anti-parallel reconnection in the dawn sector of the northern hemisphere. The second LLBL/cusp is located at extremely low latitude, less than ∼66.3° ILAT. During all LLBL/cusp crossings, strong ionospheric O+ ion outflow is detected in the form of a narrow beam with limited pitch-angle range.  相似文献   

2.
MHD simulations are here applied to aid in the interpretation of three apparent cusp encounters by the Cluster 4 spacecraft in unusual places when the magnetosphere was under extreme solar wind and interplanetary magnetic field (IMF) conditions associated with the passage of magnetic clouds imbedded within fast ICMEs. At the time of each cusp encounter the IMF was very strong, generally northward in one case, generally equatorial in a second case, and generally southward in the third case. In the southward IMF case, the MHD models locate the origin of the cusp-like plasma by showing that the position of the spacecraft at the time of encounter was engulfed in a tongue of high-pressure plasma extending from the magnetopause into the magnetosphere. This tongue points to the northern-hemisphere cusp as the source of the feature. In the equatorial IMF case an elevated-pressure feature that apparently marked a cusp encounter in the computations coincided, however, with a passage in the solar wind of a dynamic pressure pulse, thus giving an alternative interpretation of the feature. However, Cluster data unambiguously identified the event as an encounter with magnetosheath-like plasma. Given that the Cluster observations classify the event as a true encounter with a cusp-like plasma feature (and not a compression event), the model simulations can be interpreted as identifying the origin of the feature to have been the northern-hemisphere cusp even though?—?and this is the interesting point?—?the observation point was in the southern hemisphere. In the northward IMF case, neither cusp (defined as a magnetic funnel linking the magnetopause to the Earth) was directly connected to the observation point. Instead, this encounter of magnetosheath-like plasma appears to be an instance of boundary-layer formation by means of the Song?–?Russell mechanism in which two-point magnetic reconnection entrains magnetosheath plasma on closed field lines when the IMF is northward.  相似文献   

3.
Analysis of global hybrid simulations of Mercury’s magnetosphere-solar wind interaction is presented for northward and southward interplanetary magnetic field (IMF) orientations in the context of MESSENGER’s first two encounters with Mercury. The global kinetic simulations reveal the basic structure of this interaction, including a bow shock, ion foreshock, magnetosheath, cusp regions, magnetopause, and a closed ion ring belt formed around the planet within the magnetosphere. The two different IMF orientations induce different locations of ion foreshock and different magnetospheric properties: the dayside magnetosphere is smaller and cusps are at lower latitudes for southward IMF compared to northward IMF whereas for southward IMF the nightside magnetosphere is larger and exhibits a thin current sheet with signatures of magnetic reconnection and plasmoid formation. For the two IMF orientations the ion foreshock and quasi-parallel magnetosheath manifest ion-beam-driven large-amplitude oscillations, whereas the quasi-perpendicular magnetosheath shows ion-temperature-anisotropy-driven wave activity. The ions in Mercury’s belt remain quasi-trapped for a limited time before they are either absorbed by Mercury’s surface or escape from the magnetosphere. The simulation results are compared with MESSENGER’s observations.  相似文献   

4.
We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.Deceased January 24, 1993; R. Bunemanet al. 1993.  相似文献   

5.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

6.
Raeder  J.  Wang  Y.L.  Fuller-Rowell  T.J.  Singer  H.J. 《Solar physics》2001,204(1-2):323-337
We present results from a global simulation of the interaction of the solar wind with Earth's magnetosphere, ionosphere, and thermosphere for the Bastille Day geomagnetic storm and compare the results with data. We find that during this event the magnetosphere becomes extremely compressed and eroded, causing 3 geosynchronous GOES satellites to enter the magnetosheath for an extended time period. At its extreme, the magnetopause moves at local noon as close as 4.9 R E to Earth which is interpreted as the consequence of the combined action of enhanced dynamic pressure and strong dayside reconnection due to the strong southward interplanetary magnetic field component B z, which at one time reaches a value of −60 nT. The lobes bulge sunward and shield the dayside reconnection region, thereby limiting the reconnection rate and thus the cross polar cap potential. Modeled ground magnetic perturbations are compared with data from 37 sub-auroral, auroral, and polar cap magnetometer stations. While the model can not yet predict the perturbations and fluctuations at individual ground stations, its predictions of the fluctuation spectrum in the 0–3 mHz range for the sub-auroral and high-latitude regions are remarkably good. However, at auroral latitudes (63° to 70° magnetic latitude) the predicted fluctuations are slightly too high. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014228230714  相似文献   

7.
To examine electron transport, energization, and precipitation in Mercury's magnetosphere, a hybrid simulation study has been carried out that follows electron trajectories within the global magnetospheric electric and magnetic field configuration of Mercury. We report analysis for two solar-wind parameter conditions corresponding to the first two MESSENGER Mercury flybys on January 14, 2008, and October 6, 2008, which occurred for similar solar wind speed and density but contrasting interplanetary magnetic field (IMF) directions. During the first flyby the IMF had a northward component, while during the second flyby the IMF was southward. Electron trajectories are traced in the fields of global hybrid simulations for the two flybys. Some solar wind electrons follow complex trajectories at or near where dayside reconnection occurs and enter the magnetosphere at these locations. The entry locations depend on the IMF orientation (north or south). As the electrons move through the entry regions they can be energized as they execute non-adiabatic (demagnetized) motion. Some electrons become magnetically trapped and drift around the planet with energies on the order of 1–10 keV. The highest energy of electrons anywhere in the magnetosphere is about 25 keV, consistent with the absence of high-energy (>35 keV) electrons observed during either MESSENGER flyby. Once within the magnetosphere, a fraction of the electrons precipitates at the planetary surface with fluxes on the order of 109 cm−2 s−1 and with energies of hundreds of eV. This finding has important implications for the viability of electron-stimulated desorption (ESD) as a mechanism for contributing to the formation of the exosphere and heavy ion cloud around Mercury. From laboratory estimates of ESD ion yields, a calculated ion production rate due to ESD at Mercury is found to be on par with ion sputtering yields.  相似文献   

8.
An empirical formula has been constructed using the results of correlative analyses to determine in what form the AL index, as a measure of the intensity of the westward auroral electrojet, depends on interplanetary parameters. The formula thus obtained shows that AL is mainly determined by BsV2 where Bs is the southward component of the IMF and V is the solar wind velocity, and is modulated in a characteristic way by the combined effect of the east-west component of the IMF and the tilt angle of the Earth's dipole axis toward the Sun-Earth line. In contrast, effects of the solar wind density and the IMF variability were found to be insignificant.Implications of the empirical formula are discussed mainly in relation to the problem of the location in the dayside magnetosphere of the region where the reconnection process to initiate the substorm takes place.  相似文献   

9.
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.  相似文献   

10.
In a previous study (Cane and Richardson, J. Geophys. Res. 108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a “comprehensive” catalog of these events. In this paper, we present a revised and updated catalog of the ≈300 near-Earth ICMEs in 1996 – 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied “magnetic clouds”, with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.  相似文献   

11.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

12.
Magnetic field orientations in the sheaths of ten fast interplanetary coronal mass ejections (ICMEs) that cover the solar longitude range roughly from 20° East to 33° West (as determined from the associated flare or filament disruption) are overlain on the MHD-computed magnetic field pattern showing draping in Earth’s magnetosheath. The general draping pattern is evident in the ICME sheath orientations including, most importantly, the east flank where draping causes the greatest distortion of the magnetic field away from the general Parker spiral. Deviations from the general draping pattern are also evident which, we suggest, result from the history of accretion of the inhomogeneous interplanetary magnetic field (IMF) into the ICME sheath over a long stretch of solar wind before arriving at one AU. The profiles of magnetic field intensity between the ICME shock and the nose of the ICME deviate significantly from the corresponding profile in Earth’s magnetosheath. The ICME samples are much more irregular and show no general tendency to increase toward the stagnation point. We suggest that again this difference reflects the history of IMF accretion by the ICME sheath. The long stretch of accreted inhomogeneous field (a significant fraction of one AU) can account for the irregularity, and the weakness of the field close to the body possibly reflects a weaker ICME shock closer to the Sun.  相似文献   

13.
Cargill  Peter J. 《Solar physics》2004,221(1):135-149
It is well known that the interaction of an interplanetary coronal mass ejection (ICME) with the solar wind leads to an equalisation of the ICME and solar wind velocities at 1 AU. This can be understood in terms of an aerodynamic drag force per unit mass of the form F D/M=−(ρe AC D/M)(V iV e)∣V iV e∣, where A and M are the ICME cross-section and sum of the mass and virtual mass, V i and V e the speed of the ICME and solar wind, ρe the solar wind density, C D a dimensionless drag coefficient, and the inverse deceleration length γ=ρe A/M. The optimal radial parameterisation of γ and C D beyond approximately 15 solar radii is calculated. Magnetohydrodynamic simulations show that for dense ICMEs, C D varies slowly between the Sun and 1 AU, and is of order unity. When the ICME and solar wind densities are similar, C D is larger (between 3 and 10), but remains approximately constant with radial distance. For tenuous ICMEs, the ICME and solar wind velocities equalise rapidly due to the very effective drag force. For ICMEs denser that the ambient solar wind, both approaches show that γ is approximately independent of radius, while for tenuous ICMEs, γ falls off linearly with distance. When the ICME density is similar to or less than that in the solar wind, inclusion of virtual mass effects is essential.  相似文献   

14.
Magnetic field and plasma data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft on the outbound portions of the first (M1) and second (M2) flybys of Mercury reveal a region of depressed magnetic field magnitude and enhanced proton fluxes adjacent to but within the magnetopause, which we denote as a dayside boundary layer. The layer was present during both encounters despite the contrasting dayside magnetic reconnection, which was minimal during M1 and strong during M2. The overall width of the layer is estimated to be between 1000 and 1400 km, spanning most of the distance from the dayside planetary surface to the magnetopause in the mid-morning. During both flybys the magnetic pressure decrease was ∼1.6 nPa, and the width of the inner edge was comparable to proton gyro-kinetic scales. The maximum variance in the magnetic field across the inner edge was aligned with the magnetic field vector, and the magnetic field direction did not change markedly, indicating that the change in field intensity was consistent with an outward plasma-pressure gradient perpendicular to the magnetic field. Proton pressures in the layer inferred from reduced distribution observations were 0.4 nPa during M1 and 1.0 nPa during M2, indicating either that the proton pressure estimates are low or that heavy ions contribute substantially to the boundary-layer plasma pressure. If the layer is formed by protons drifting westward from the cusp, there should be a strong morning–afternoon asymmetry that is independent of the interplanetary magnetic field (IMF) direction. Conversely, if heavy ions play a major role, the layer should be strong in the morning (afternoon) for northward (southward) IMF. Future MESSENGER observations from orbit about Mercury should distinguish between these two possibilities.  相似文献   

15.
Khabarova  O.  Zastenker  G. 《Solar physics》2011,270(1):311-329
Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.  相似文献   

16.
The distribution of the shocks in the heliosphere and their characteristic variations are investigated using Ulysses observations. The jumps in solar wind velocity, IMF magnitude, and proton density across the shocks and discontinuities are evaluated and used to characterize them. The distribution of these discontinuities with respect to heliolatitude ± 80° and with radial distance 1 to 5 AU are analyzed during solar minimum and solar maximum to understand their global behavior. It is noticed that the jumps in solar wind parameters associated with shocks and discontinuities are more prominent during the second orbit of Ulysses, which coincided with the maximum phase of solar activity.  相似文献   

17.
I. Sabbah 《Solar physics》2007,245(1):207-217
Neutron monitor data observed at Climax (CL) and Huancayo/Haleakala (HU/HAL) have been used to calculate the amplitude A of the 27-day variation of galactic cosmic rays (CRs). The median primary rigidity of response, R m, for these detectors encompasses the range 18 ≤R m≤46 GV and the threshold rigidity R 0 covers the range 2.97≤R 0≤12.9 GV. The daily average values of CR counts have been harmonically analyzed for each Bartels solar rotation (SR) during the period 1953 – 2001. The amplitude of the 27-day CR variation is cross-correlated to solar activity as measured by the sunspot number R, the interplanetary magnetic field (IMF) strength B, the z-component B z of the IMF vector, and the tilt angle ψ of the heliospheric current sheet (HCS). It is anticorrelated to the solar coronal hole area (CHA) index as well as to the solar wind speed V. The wind speed V leads the amplitude by 24 SRs. The amplitude of the 27-day CR variation is better correlated to each of the these parameters during positive solar polarity (A>0) than during negative solar polarity (A<0) periods. The CR modulation differs during A>0 from that during A<0 owing to the contribution of the z-component of the IMF. It differs during A 1>0 (1971 – 1980) from that during A 2>0 (1992 – 2001) owing to solar wind speed.  相似文献   

18.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   

19.
This paper presents the effect of geomagnetic storm on geomagnetic field components at Southern (Maitri) and Northern (Kiruna) Hemispheres. The Indian Antarctic Station Maitri is located at geom. long. 66.03° S; 53.21° E whereas Kiruna is located at geom. long. 67.52° N; 23.38° E. We have studied all the geomagnetic storms that occurred during winter season of the year 2004–2005. We observed that at Southern Hemisphere the variation is large as compared to the Northern Hemisphere. Geomagnetic field components vary when the interplanetary magnetic field is oriented in southward direction. Geomagnetic field components vary in the main phase of the ring current. Due to southward orientation of vertical component of IMF reconnection takes place all across the dayside that transports plasma and magnetic flux which create the geomagnetic field variation.  相似文献   

20.
We have performed a survey of the characteristics of two types of large spatial-scale solar-wind structures, stream interaction regions (SIRs), and interplanetary coronal mass ejections (ICMEs), near 5.3 AU, using solar-wind observations from Ulysses. Our study is confined to the three aphelion passes of Ulysses, and also within ± 10° of the solar ecliptic plane, covering a part of 1992, 1997 – 1998, and 2003 – 2005, representing three slices of different phases of the solar activity cycle. Overall, there are 54 SIRs and 60 ICMEs in the survey. Many are merged in hybrid events, suggesting that they have undergone multiple interactions prior to reaching Jovian orbit. About 91% of SIRs occur with shocks, with 47% of such shocks being forward – reverse shock pairs. The solar-wind velocity sometimes stays constant or even decreases within the interaction region near 5.3 AU, in contrast with the gradual velocity increase during SIRs at 1 AU. Shocks are driven by 58% of ICMEs, with 94% of them being forward shocks. Some ICMEs seem to have multiple small flux ropes with different scales and properties. We quantitatively compare various properties of SIRs and ICMEs at 5.3 AU, and study their statistical distributions and variations with solar activity. The width, maximum dynamic pressure, and peak perpendicular pressure of SIRs all become larger than ICMEs. Dynamic pressure (P dyn) is expected to be important for Jovian magnetospheric activity. We have examined the distributions of P dyn of SIRs, ICMEs, and general solar wind, but these cannot explain the observed bimodal distribution of the location of the Jovian magnetopause. By comparing the properties of SIRs and ICMEs at 0.72, 1, and 5.3 AU, we find that the ICME expansion slows down significantly between 1 and 5.3 AU. Some transient and small streams in the inner heliosphere have merged into a single interaction region. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号