首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trajectories of satellites under the influences of earth oblateness and air drag are derived by the asymptotic method in nonlinear mechanics. Based on the assumptions: (1) the dominant oblateness factor of the earth is the second harmonic (J 2), (2) a non-rotating, spherically symmetric atmosphere and an exponential distribution of atmospheric density, (3) original elliptical orbits being of small eccentricity, closed-form solutions for the improved first order approximation are obtained. After finding the osculating orbital elements of the resulting trajectories, we expose the behavior of osculating orbits at various inclinations.  相似文献   

2.
A development of an analytical solution for the motion of an artificial Earth satellite subject to the combined effects of Earth gravity and air drag is presented. The atmospheric model takes into account a linear variation of the density scale height with altitude, the rotation and the oblateness of the atmosphere. The perturbation theory is based upon Lie transforms. The secular and long-periodic terms as well as the short-periodic effects are included in the theory which is valid for small to moderate eccentricities and for all values of the inclination.Belgian National Fund for Scientific Research  相似文献   

3.
The basic principles and equations of Hansen's method are briefly stated. These equations are integrated to first order accuracy by analytic quadratures for the case of perturbations due to the Earth's oblateness and the procedure for obtaining the position of a satellite acted upon by such a perturbation is described in detail. Comparison of accuracies of one day predictions made with this Hansen's method and a first order variation of parameters method indicates comparable accuracies can be achieved with approximately 1/10 of the computation time when using Hansen's method.Presented at the AIAA/AAS Astrodynamics Conference, Princeton, N.J., August 20–22, 1969 (AIAA Preprint No. 69-909).  相似文献   

4.
5.
The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.  相似文献   

6.
The variations of perturbations in perigee distance for different values of the orbital eccentricity for artificial Earth's satellites due to air drag have been studied. The analytical solution of deriving these perturbations, using the TD model (Total Density) have been applied, Helali (1987). The Theory is valid for altitudes ranging from 200 to 500 km above the Earth's surface and for solar 10.7 cm flux. Numerical examples are given to illustrate the variations of the perturbations in perigee distance with changing eccentricity (e < 0.2). A stronge perturbations in the perigee distance have been shown when the eccentricity in the range 0.001 <e < 0.05, especially for perigee distance 200 km.  相似文献   

7.
Finding relative satellite orbits that guarantee long-term bounded relative motion is important for cluster flight, wherein a group of satellites remain within bounded distances while applying very few formationkeeping maneuvers. However, most existing astrodynamical approaches utilize mean orbital elements for detecting bounded relative orbits, and therefore cannot guarantee long-term boundedness under realistic gravitational models. The main purpose of the present paper is to develop analytical methods for designing long-term bounded relative orbits under high-order gravitational perturbations. The key underlying observation is that in the presence of arbitrarily high-order even zonal harmonics perturbations, the dynamics are superintegrable for equatorial orbits. When only J 2 is considered, the current paper offers a closed-form solution for the relative motion in the equatorial plane using elliptic integrals. Moreover, necessary and sufficient periodicity conditions for the relative motion are determined. The proposed methodology for the J 2-perturbed relative motion is then extended to non-equatorial orbits and to the case of any high-order even zonal harmonics (J 2n , n ≥ 1). Numerical simulations show how the suggested methodology can be implemented for designing bounded relative quasiperiodic orbits in the presence of the complete zonal part of the gravitational potential.  相似文献   

8.
W. Landgraf 《Solar physics》1992,142(2):403-406
From astrometric observations of minor planet (1566) Icarus from 1949 to 1987 were made solutions for improved orbital elements of Icarus and the quadrupole moment of the Sun. The formal result was J2 = -0.6±5.8 &d 10–6. From this we can conclude that J 2 is very probably less than 2 · 10–-5.  相似文献   

9.
10.
The fast spinning B-star Regulus has recently been found to be orbited by a fainter companion in a close circular path with orbital period P b=40.11(2) d. Being its equatorial radius R e 32% larger than the polar one R p, Regulus possesses a remarkable quadrupole mass moment Q. We investigate the effects of Q on the orbital period P b of its companion in order to see if they are measurable, given the present-day level of accuracy in measuring P b. Conversely, we will look for deviations from the third Kepler law, attributed to the quadrupole mass moment Q of Regulus, to constrain the ratio γ=m/M of the system’s masses. The impact of Q on the orbital period is analytically worked out with a straightforward perturbative approach. The resulting correction P Q is compared to other competing dynamical effects. P Q and the Keplerian period P Kep are expressed in terms of the phenomenologically determined system’s parameters; γ is treated as an unknown. P Q is compared to the observational accuracy in measuring the orbital period δ P b=0.02 d and to the systematic uncertainty δ(P Kep) due to the errors in the system’s parameters entering it. The discrepancy ΔP=|P b?P Kep| is examined in order to see for which values of γ it becomes statistically significant. The physical meaning of the obtained range of values for γ is discussed in terms of Q. P Q is larger than δ P b but still smaller than the systematic uncertainty in P Kep by two orders of magnitude. The major sources of bias are the velocity semiamplitude K of the motion of the primary and its mass M. Assuming edge-on configuration, i.e. i=90 deg, if γ?0.096 Q would be positive, i.e. Regulus would be prolate, contrary to the observations. If γ?0.078 Q would be negative, but its magnitude would be one-two orders of magnitude larger than the approximate estimate QM(R p 2 ?R e 2 )=?2.4±0.5×1049 kg?m2. Regulus is the first extrasolar binary system in which the orbital effects of the asphericity of the primary are larger than the observational sensitivity; moreover, no other competing aliasing orbital effects are present. Thus, it is desirable that it will become the object of future intensive observational campaigns in order to reduce the systematic uncertainty due to the system’s parameters below the measurability threshold.  相似文献   

11.
In this paper, we consider a satellite orbiting in a Manev gravitational potential under the influence of an atmospheric drag force that varies with the square of velocity. Using an exponential atmosphere that varies with the orbital altitude of the satellite, we examine a circular orbit scenario. In particular, we derive expressions for the change in satellite radial distance as a function of the drag force parameters and obtain numerical results. The Manev potential is an alternative to the Newtonian potential that has a wide variety of applications, in astronomy, astrophysics, space dynamics, classical physics, mechanics, and even atomic physics.  相似文献   

12.
The known intervals of possible stability, on the mgr-axis, of basicfamilies of 3D periodic orbits in the restricted three-body problem areextended into -A1 regions for oblate larger primary, A 1 beingthe oblateness coefficient. Eight regions, corresponding to the basicstable bifurcation orbits l1v, l1v, l2v, l3v, m1v, m1v,m2v, i1v are determined and related branching 3D periodic orbits arecomputed systematically and tested for stability. The regions for l1v,m1v and m2v survive the test emerging as the regions allowing thesimplest types of stable low inclination 3D motion. For l1v, l2v,l3v, m1v and m2v oblateness seems to have a stabilising effect,while stability of i1v survives only for a very small range of A 1values.  相似文献   

13.
The axisymmetric satellite problem including radiation pressure and drag is treated. The equations of motion of the satellite are derived. The energy-like and Laplace-like invariants of motion have been derived for a general drag force function of the polar angle, and the Laplace-like invariant is used to find the orbit equation in the case of a spherical satellite. Then using the small parameter, the orbit of the satellite is determined for an axisymmetric satellite.  相似文献   

14.
15.
The aim of the present paper is to present the theoretical background of a method to compute the planetary perturbations on the Moon's motion. We formulate an algorithm based upon the Lie transform method and well-suited to the particular problem at hand.This algorithm is being implemented using Henrard's Semi-Analytical Lunar Ephemeris (SALE) as solution of the Main Problem and Bretagnon's planetary theory. The accuracy of the solution is intended to be about 0".001 for terms of period up to 2000 years.To illustrate the interest of our approach, we comment on some preliminary results obtained about the direct perturbations due to Venus on the Moon's longitude. The final results will be the subject of another paper.  相似文献   

16.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

17.
In this paper we apply a numerical method to determine unmodeled perturbations in an attempt to explain the observed discrepancies in the motion of Uranus. We find that the estimated perturbation shows some significant periods that could be attributed to insufficient knowledge of the perturbations from some of the known planets. On the assumption that the gravitational attraction of an unknown planet is the origin of the deviations, the best planar solution of the inverse problem is a planet of 0.6 Earth masses, with true longitude of 133° (1990.5), semi major axis a = 44 AU and eccentricity e = 0.007.  相似文献   

18.
This paper investigates the combined effect of small perturbations ε,ε′ in the Coriolis and centrifugal forces, radiation pressure q i , and changing oblateness of the primaries A i (t) (i=1,2) on the stability of equilibrium points in the restricted three body problem in which the primaries is a supergiant eclipsing binary system which consists of a pair of bright oblate stars having the appearance of a giant peanut in space and their masses assumed to vary with time in the absence of reactive forces. The equations of motion are derived and the equilibrium points are obtained. For the autonomized system, it is seen that there are more than a pair of the triangular points as κ→∞; κ being the arbitrary sum of the masses of the primaries. In the case of the collinear points, two additional equilibrium points exist on the line joining the primaries when simultaneously κ+ε′<0 and both primaries are oblate, i.e., 0<α i ?1. So there are five collinear equilibrium points in this case. Two non-planar equilibrium points exist for κ>1. Hence, there are at least nine equilibrium points of the system. The stability of these points is explored analytically and numerically. It is seen that the collinear and triangular points are stable with respect to certain conditions controlled by κ while the non-planar equilibrium points are unstable.  相似文献   

19.
The motion of artificial satellites in the gravitational field of an oblate body is discussed in the post — Newtonian framework using the technique of canonical Lie transformations. Two Lie transformations are used to derive explicit results for the longperiodic and secular perturbations for satellite orbits in the Einstein case.  相似文献   

20.
The motion of artificial satellites in the gravitational field of an oblate body is discussed in the parametrized-post-Newtonian (PPN) framework with parameters and . Analytical expressions for first order post-Newtonian short periodic, long periodic and secular perturbations of orbital elements are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号