首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The results of the observations to search gamma-ray sources with the energy greater than 2×1012 eV, which were made in Crimean Astrophysical Observatory during the years 1969–73 are presented. A technique of the detection of the EAS Cerenkov flashes was used.The quality of the data obtained is analysed. The criteria for the selection of the data free from meteorological variations are considered.It was shown that two objects, namely, Cyg X-3 and Cas -1, may be the sources of high-energy gamma quanta. It is probable that the object with the coordinates =05h15m, =+1° is the source of gamma-rays as well. An unidentified object Cas -1 is variable: gamma-ray flux was observed twice — in Sepember–October 1971 and in December 1972. It is possible that the flux from Cyg X-3 has a period of 4.8 hr.
I I , I I , - >2.1012 . I . I , I I, I ., - -1 Cyg -3- -I . , =0515 ·=+1° -.I -1 I: I J I- - 1971 1972 . Cyg -3, , - T=4.8 .
  相似文献   

2.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

3.
4.
5.
6.
. ]Qi . , r=r. . , . H>2G, — , . , . . .
The exact solutions for the equilibrium of rotating gaseous disk with poloidal magnetic field are obtained. The stability of the disk with respect to uniform expansion and contraction is investigated by means of the variational principle. It is shown that if the equilibrium is determined by gravitational and magnetic forces only, the disk is in neutral equilibrium with respect to perturbations of the form r=r. The instability to short-waves perturbations is studied by the quasi-classical method. The analysis shows that if the magnetic field isH>2G, where is the surface density, then these perturbations are stabilized. The configurations of the electrical field induced by the rotation of magnetized disk are found. In conclusion, the questions of the evolution of the disk are discussed in connection with the quasar model when pulsar-like radiation is taken into account.
  相似文献   

7.
8.
The gravity potential of an arbitrary bodyT is expanded in a series of spherical harmonics and rigorous evaluations of the general termV n of the expansion are obtained. It is proved thatV n decreases on the sphere envelopingT according to the power law if the body structure is smooth. For a body with analytic structure,V n decreases in geometric progression. The exactness of these evaluations is proved for bodies having irregular and analytic structures. For the terrestrial planetsV n =O (n –5/2).
I I V n IV n I . . IV n I . I. IV n =O(n –5/2 )
  相似文献   

9.
The explicit expressions for the orientation distribution function of interstellar and interplanetary dust grains in the anisotropic corpuscular or radiation fluxes, with consideration for the magnetic field influence, are obtained. An orientation is shown to be possible in a medium having an anisotropic temperature, which is usually the case for a non-equilibrium plasma in a magnetic field. It is noted that the small inhomogeneous dust grains should possess a specific rotation of polarization. The orientation of these dust grains is considered. The time required for the orientation is estimated. A possibility of explaining the interstellar polarization and polarization of the cometary radiation is discussed.
. , . , . . .
  相似文献   

10.
An essential part in the mechanics under study is taking into consideration the effect of motions of the Universe objects upon that of an individual one surrounded by them including those infinitely far from it. Only macro-objects of the Universe are meant here.
Zusammenfassung Ein wesentlicher Bestandteil der Mechanik unter unserer Betrachtung ist die Berechnung des Einflusses auf die Bewegung eines individuellen Objektes von Bewegungen der Universum Objekte die es umringen einschließlich jene Objekte, die unendlich entfernt sind. Nur Makroobjekte des Weltalles sind in der Absicht dabei.

, . .
  相似文献   

11.
12.
13.
14.
An exact analysis of Hall current on hydromagnetic free convection with mass transfer in a conducting liquid past an infinite vertical porous plate in a rotating fluid has been presented. Exact solution for the velocity field has been obtained and the effects ofm (Hall parameter),E (Ekman number), andS c (Schmidt number) on the velocity field have been discussed.Nomenclature C species concentration - C w concentration at the porous plate - C species concentration at infinity - C p specific heat at constant pressure - D chemical molecular diffusivity - g acceleration due to gravity - E Ekman number - G Grashof number - H 0 applied magnetic field - j x, jy, jz components of the current densityJ - k thermal conductivity - M Hartman number - m Hall parameter - P Prandtl number - Q heat flux per unit area - S c Sehmidt number - T temperature of the fluid near the plate - T w temperature of the plate - T temperature of the fluid in the free-stream - u, v, w components of the velocity fieldq, - U uniform free stream velocity - w 0 suction velocity - x, y, z Cartesian coordinates - Z dimensionless coordinate normal to the plate. Greek symbols coefficient of volume expansion - * coefficient of expansion with concentration - e cyclotron frequency - dimensionless temperature - * dimensionless concentration - v kinematic viscosity - density of the fluid in the boundary layer - coefficient of viscosity - e magnetic permeability - angular velocity - electrical conductivity of the fluid - e electron collision time - u skin-friction in the direction ofu - v skin-friction in the direction ofv  相似文献   

15.
. . . , , m 1, m2, m3, n ( .
The conditions of stability of the constant libration solutions of the general three-bodies problem obtained by E. Routh through investigation of the linearized perturbed motion equations are analised. To the values of the masses of the three bodies which satisfy boundary conditions of the region of stability the locus of all corresponding centers of masses is laid down in accordance with. It occurs that this locus is a circle, its centre coinciding with the geometric centre of the trianglem 1, m2, m3 and its radius being a function of exponent in the law of attraction of the bodies. The motion may be stable only if the centre of masses of the bodies lies outside the circle mentioned above. In the case of the Newtonian law of attraction the radius of this circle equals 0,943 |rmax| where |rmax| is a distance of the vertex from the centre of the trianglem 1, m2, m3. Thus stability is possible (if it is generally possible) inside a very small region in this case.
  相似文献   

16.
17.
18.
, , , , ,S , , , S Mg. , . , . , ( , ..). B5 B0; (<1%).  相似文献   

19.
It is shown that in the radiation era of the Universe spatial temperature fluctuations (T/T)<10–5 in the cosmic plasma lead to huge changes of the density up to (/)104. This effect results from the fact that the cosmic plasma in the radiation era can be considered as a general relativistic Boltzmann gas which is found in the very vincinity of equilibrium.  相似文献   

20.
A limiting case of the problem of three bodies (m 0,m 1,m 2) is considered. The distance between the bodiesm 0 andm 1 is assumed to be much less than that between their barycenter and the bodym 2 so that one may use Hill's approximation for the potential of interaction between the bodiesm 1 andm 2. In the absence of resonant relations the potential, double-averaged by the mean longitudes ofm 1 andm 2, describes the secular evolution of the orbits in the first approximation of the perturbation theory.As Harrington has shown, this problem is integrable. In the present paper a qualitative investigation of the evolution of the orbits and comparison with the analogous case in the restricted problem are carried out.The set of initial data is found, for which a collision between the bodiesm 0 andm 1 takes place.The region of the parameters of the problem is determined, for which plane retrograde motion is unstable.In a special example the results of approximate analysis are compared with those of numerical integration of the exact equations of the three body problem.
m 0,m 1,m 2. , m 0 m 1. m 2, m 1 m 2 m 1 m 2 . , . . , m 0 m 1. , . .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号