首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制   总被引:28,自引:11,他引:28  
西天山阿吾拉勒二叠纪钠质英安岩和钠长斑岩具有与埃达克岩一致的高Sr,低Y、Yb和Eu正异常等独特岩石地球化学特征。系统的Nd和Sr同位素组成研究表明,其(^143Nd/^144Nd)i为0.512384-0.512470,εNd(t)为正值(+1.57-+3.26);(^87Sr/^86Sr)i为0.0751-0.7054,与本区同时代幔源玄武岩的Nd和Sr同位素组成特征相似,但与俯冲洋壳部分熔融成因埃达克岩的Nd和Sr同位素组成有显著区别。结合这些埃达克质岩石形成二叠纪后碰撞阶段构造背景,认为本区埃达克质岩浆最有可能由新底侵的玄武质下地壳在角闪岩相向榴辉岩相过渡或榴辉岩相的条件下部分熔融形成,是西天山晚古生代后碰撞阶段地幔玄武岩浆底侵作用和地壳垂向增生的重要岩石标志。  相似文献   

3.
4.
5.
稳定Sr、Nd同位素是全新的体系,其重点关注自然过程中稳定Sr和Nd同位素分馏特征与控制机制。这方面的知识可以修正传统Rb Sr和Sm-Nd同位素体系中恒定的稳定Sr、Nd同位素组成的前提假设所带来的认知偏差,补充和完善其知识体系。介绍了稳定Sr、Nd同位素体系的基本概念,综述并点评了最新的分析技术进展,并对稳定Sr、Nd同位素分馏对传统的放射成因Sr、Nd同位素组成的影响进行评估,同时对这两个新的稳定同位素体系的潜在研究应用进行展望。  相似文献   

6.
Using the ICP-MS method we have studied the isotope systematics of Sr and Nd as well as trace element composition of a representative collection of kimberlites and related rocks from the Siberian Platform. The summarized literature and our own data suggest that the kimberlites developed within the platform can be divided into several petrochemical and geochemical types, whose origin is related to different mantle sources. The petrochemical classification of kimberlites is based on persistent differences of their composition in mg# and in contents of indicator oxides such as FeOtot, TiO2, and K2O. The recognized geochemical types of kimberlites differ from one another in the level of concentration of incompatible elements as well as in their ratios.Most of isotope characteristics of kimberlites and related rocks of the Siberian Platform correspond to the earlier studied Type 1 basaltoid kimberlites from different provinces of the world: Points of isotopic compositions are in the field of primitive and weakly depleted mantle. An exception is one sample of the rocks from veins of the Ingashi field (Sayan area), which is characterized by the Sr and Nd isotopic composition corresponding to Type 2 micaceous kimberlites (orangeites).The most important feature of distribution of isotopic and trace-element compositions (incompatible elements) is their independence of the chemical rock composition. It is shown that the kimberlite formation is connected with, at least, two independent sources, fluid and melt, responsible for the trace-element and chemical compositions of the rock. It is supposed that, when rising through the heterogeneous lithosphere of the mantle, a powerful flow of an asthenosphere-derived fluid provoked the formation of local kimberlite chambers there. Thus, the partial melting of the lithosphere mantle led to the formation of contrasting petrochemical types of kimberlites, while the geochemical specialization of kimberlites is due to the mantle fluid of asthenosphere origin, which drastically dominated in the rare-metal balance of a hybrid magma of the chamber.  相似文献   

7.
Initial Nd and Sr isotopic ratios have been measured for Cretaceous acidic and related intermediate rocks (24 volcanic and two plutonic rocks) from the Inner Zone of Southwest Japan (IZSWJ) to investigate the genesis of acidic magmas. The initial Nd and Sr isotopic ratios for these rocks show three interesting features: (1) Nd values for acidic rocks (+2 to –9) are negatively correlated with Sr values (+10 to +90) together with those for intermediate rocks ( Nd=+3 to -8; Sr=0 to +65). (2) The Nd values for silica rich rocks (>60% SiO2) correlate with the longitude of the sample locality, decreasing from west to east in a stepwise fashion: Four areas characterized by uniform Nd values are discriminated. (3) Low silica rocks (<60% SiO2) in a certain area have distinctly different Nd values from those of the high silica rocks in the same area.These results as well as those deduced from the additional samples collected, for comparison, from other provinces in Japan suggest that the acidic rocks can be formed neither by fractional crystallization processes from more basic magmas nor by crustal assimilation processes. The isotopic variations of the acidic rocks may reflect regional isotopic heterogeneity in the lower crust, and this heterogeneity may ultimately be attributed to the regional heterogeneity of the uppermost-mantle beneath the Japanese Islands.  相似文献   

8.
This paper compile the rare-earth elements and Nd isotope data for lunar pristine rocks from investiga-tions in recent years. Using these data, we compared the REE characteristics of lunar pristine rocks and Nd isotopic compositions of their source regions. Based on the Lunar Magma Ocean model, we then studied their formation and petrogenetic correlations of Mg suite, alkali suite, and KREEP, with especial emphasis on the importance of assimi-lation during early magmatism. And Nd isotopic compositions of mare basalt samples suggest that mantle sources of mare basalts should be heterogeneous, which has not yet been explained by several current models.  相似文献   

9.
Isotopic analyses of Nd and Sr on individual microtektites and a bulk microtektite sample from Barbados show them to have a very well defined isotopic composition. These data plot on an εSrεNd diagram precisely within the narrow field determined by North American tektites (εSr ≈ 111; εNd ≈ ?6.2). They yield an Nd model age of 0.6 AE. These results show that the microtektites from the Oceanic beds of late Eocene age are derived from the same target as the North American tektites and should be associated with the same event. Samples of the deep sea sediments in which the Barbados microtektites occur are found to have isotopic signatures which appear to reflect ambient sea water and detrital sediments. They cannot be the source of Sr or Nd in the tektites. Following the arguments of Shaw and Wasserburg (1982) we conclude that the target area which produced the North American tektite field was composed of sediments (Eocambrian or younger) derived from very late Precambrian crust. Glass beads from Lake Wanapitei Crater are isotopically different from all other tektites (εSr ≈ 960; εNd ≈ ?31.4) and cannot be related to the North American tektites.  相似文献   

10.
张旗  王焰 《岩石学报》2001,17(4):505-513
大陆地壳组成是地球科学家关注的课题,但困难的是如何确定深部地壳,尤其是下地壳的组成。埃达克质岩的厘定从一个方面有助于这个难题的解决。中国东部“C型”埃达克质岩(adakite-like)的地球化学性质表明其形成的深度大,熔融的温度高,为下地壳中基性麻粒岩部分熔融的产物。因此,可以尝试通过埃达克质岩的地球化学特征来反演下地壳的组成。本文的初步研究表明,中国东部埃达克质岩的Sr-Nd同位素组成有很大的变化,反映埃达克质岩熔融的源区下地壳组成有明显的不同。根据埃达克质岩石的Sr-Nd同位素组成,推测中国东部高原下地壳大体由胶东-大别、北京-辽西和下扬子(长江中下游)3个不同的块体组成。1,胶东-大别区:胶东区的下地壳以富Si,Na2O/K2O低(0.8-1.3)、Isr高(0.709-0.712)、εNd(t)低(-15--21)和TDM高(1.9-2.1Ga)为特征;大别区的Isr值较低,可能代表了中生代时基底的特征,大体相当于该区下地壳的上限值。2,下扬子区位于扬子地块内,中生代埃达克质岩的Sr初始值,εNd和TDM变化大,说明元古宙的下地壳基底中可能有较多年轻的玄武质岩石底侵加入。相比而言,铜陵区的Isr较高(0.707-0.709)、εNd(t)较低(-11--16)、TDM高(1.7-2.2Ga),接近扬子下地壳的特征。3,辽西-北京地区的Sr-Nd高位素组成以低的Isr(0.705-0.707)、变化的εNd(t)(-4--20)和TDM(0.7-2.1Ga)为特征,反映辽西-北京区下地壳组成比较复杂。其中北京-彰武地区的Sr-Nd同位素组成与汉诺坝玄武岩中的麻粒岩包体类似,远高于华北下地壳的εNd(t)值(-32--44),推测埃达克质岩石并非来自古老的华北太古宙下地壳,而可能是中生代时增生在华北下地壳底部的年轻基性麻粒岩部分熔融形成的。此外,文中还讨论了用埃达克岩反演下地壳组成存在的不足。  相似文献   

11.
The Francistown plutonic rocks at the south-western margin of the Zimbabwe craton consist of three igneous suites: Sanukitoid, Tonalite–Trondhjemite–Granite (TTG) suites and High-K granites. The TTG suite is subdivided into High Aluminum-TTG (HA-TTG) and Low Aluminum-TTG (LA-TTG) sub-suites. Their Rb–Sr isotope systems were partially homogenized by post-crystallization thermo–tectonic events, in which hydrothermal solutions and migmatization played an important role. Therefore, the Rb–Sr isochron age of 2427±54 Ma can only be regarded as a lower limit to the Francistown plutonic rock age. The large errors in the Sm–Nd isochron dates of Francistown granitoids indicate that these dates are not really constrained. In this study we compared the rock types of Francistown and adjacent areas, adopting the precise U, Th–Pb single zircon SHRIMP ages from the Vumba area as references. For TTG and Sanukitoid suites, the age we adopted is ca. 2.7 Ga, which is close to their depleted-mantle Sm–Nd model ages (T DM). For High-K granites, the age adopted is ca. 2.65 Ga, which is also close to their Sm–Nd isochron age. The highest ε Nd t values of Sanukitoids and TTG are +2.1 and +2.3, respectively. The positive ε Nd t values and trace element geochemistry support partial melting of a depleted mantle and young oceanic crust for the genesis of Sanukitoid and the TTG suites respectively. The lowest ε Nd t values of Sanukitoids and TTGs are −1.0 and −1.1, respectively, indicating contamination by continental crust, up to 10 and 14%, respectively. The ε Nd t values of TTG decrease with decreasing Al2O3 and Sr contents and increasing Eu negative anomalies (Eu*–Eu), suggesting that the TTG magmas underwent a coupled fractionation crystallization and crustal contamination, and that the LA-TTG was the product of the fractionation and contamination of the HA-TTG sub-suite. In contrast, negative ε Nd t values for the High-K granites (from −0.4 to −3.5) indicate the involvement of LA-TTG and some materials from an old continental crust in their genesis. The products of partial melting of both oceanic and continental crusts at the south-western margin of the Zimbabwe craton occurred within a short time interval (from 2.7 to 2.65 Ga ago) suggesting that the Francistown plutonic rocks were formed in a active continental margin environment, where a young ocean plate (Limpopo oceanic plate) subducted underneath an old continental plate (Zimbabwe craton).  相似文献   

12.
报道了大别山北缘中生代(早白垩世)不同成因系列火山-侵入岩的14个Rb-Sr,Sm-Nd同位素分析数据,其中正长岩类ISr值为0.70943-0.71014,εNd值为-14.7-15.8,亏损地幔两阶段模式年龄TDM为2.12-2.20Ga;高钾钙碱性系列岩石ISr值为0.70750-0.71054,εNd值为-17.2--19.1,TDM为2.32-2.48Ga,橄榄安粗岩系列岩石ISr值为0.70873-0.70912,εNd值为-20.7-21.7,TDM为2.60-2.68Ga。通过与基底变质岩Sm-Nd同位素组成对比,认为高钾钙碱性系列主要由类似于大别群的地壳岩石衍生而成,正长岩类是由大别群和少量较年轻地壳岩石(卢镇关群和佛子岭群?)衍生而成的,而橄榄安粗岩系列则来源于富集地幔并可能混入少量更古老的类似于泰山群的地壳组分。  相似文献   

13.
Pre-Cretaceous metasedimentary rocks occurring in the Inner Zone of the Southwest Japan Arc can be divided into three major groups, namely, high P/T metamorphic (Renge and Suo belts), low P/T metamorphic (Hida-Oki, Ryoke and Higo belts), and accretionary terranes (Akiyoshi, Maizuru, Mino-Tamba, and Ashio belts). Major and trace element compositions of most of the sedimentary rocks are typical of relatively mature sedimentary rocks, although abundances of ferromagnesian elements also suggest the presence of a significant mafic to intermediate igneous component. The sedimentary rocks with older Nd model ages (> 2.0 Ga) have high εSr values and major and trace element geochemical signatures typical of mature sediments, whereas those with younger model ages (< 1.45 Ga) have low εSr values and immature geochemical characteristics. With the exception of Hida samples, the sedimentary rocks from other districts have geochemical and isotopic features intermediate between the rocks with old and young Nd model ages. Some of the Hida samples have old Nd model ages, but others are influenced by younger rock fragments and have immature geochemical features. Based on combined isotopic and geochemical evidence, Inner Zone sedimentary rocks with older Nd model ages are interpreted to have been derived from felsic upper continental crustal materials such as Sino-Korean or northwest Yangtze craton granitoids. Compositions of rocks with younger Nd model ages reflect addition of mafic to intermediate detritus, such as island arc basalts and andesites. The rocks with intermediate Nd model ages may have formed in and around the Asian continental margin. The Hida metasedimentary rocks may have been derived from several terranes of varying age and geochemical composition.  相似文献   

14.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

15.
Whole-rock Sm–Nd isotope systematics of 79 Archean granitoids from the eastern Kaapvaal craton, southern Africa, are used to delineate lithospheric boundaries and to constrain the timescale of crustal growth, assembly and geochemical differentiation c. 3.66–2.70 Ga. Offsets in εNd values for 3.2–3.3 Ga granitoids across the Barberton greenstone belt (BGB) are consistent with existing models for c. 3.23 Ga accretion of newly formed lithosphere north of the BGB onto pre-existing c. 3.66 Ga lithosphere south of the BGB along a doubly verging subduction margin. The Nd isotopic signature of c. 3.3–3.2 Ga magmatic rocks show that significant crustal growth occurred during subduction–accretion. After c. 3.2 Ga, however, the Nd signature of intrusive rocks c. 3.1 and 2.7 Ga is dominated by intracrustal recycling rather than by new additions from the mantle, signalling cratonic stability.  相似文献   

16.
Initial Nd and Sr isotopic ratios were obtained for middle Miocene igneous rocks as well as for related rocks from the Outer Zone of Southwest Japan to investigate the petrogenesis of acidic magmas and their relation to a peculiar tectonic environment bearing on the back-arc spreading of the Japan Sea. On the Nd- Sr diagram, data points for the acidic rocks fall in the – Nd, + Sr quadrant occupying different positions from those for sedimentary and old crustal rocks, and seem to define several subparallel lines which extend towards the lower-righthand sedimentary field. The S-type acidic rocks occupy an intermediate position between I-type rocks and sedimentary ones, a fact suggesting mixing of an igneous component and a sedimentary one. The linear mixing trend observed on the Nd- Sr diagram can be attained in the restricted case that the igneous component has similar Sr/Nd concentration ratios to that of the sedimentary one, which implies an intermediate to acidic composition for the igneous component. Inconsistency between the elemental and isotopic variations observed may be reconciled by considering that mixing, probably in the relatively deep part of the crust, might have occured prior to chemical differentiation processes. The episodic igneous activity and the high heat energy required to melt such materials involving sedimentary rocks may be explained by a model in which a hot mantle region probably corresponding to the rising part of the mantle convection supplied the heating energy to the Outer Zone of Southwest Japan when passing beneath Southwest Japan in the course of movement of the hot rising part from the Shikoku basin areas to the Japan Sea area.  相似文献   

17.
The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have Tdm ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have Tdm ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 ±0.08 and 2.20 ±0.20 Ga (∑2200Nd = −15.5), respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 ±100 Ma (∑2200Nd = −5.8 ±1.8).

The Sm-Nd, O and Rb-Sr isotopic systematics of these granitic rocks have been complicated to some degree by both crystallization and post-crystallization processes, and the age of the pegmatite and parts of the Harney Peak Granite complex remain uncertain. Processes that probably complicated the isotopic systematics of these rocks include derivation from heterogeneous source material, assimilation, mixing of REE between granite and country rock during crystallization via a fluid phase and post-crystallization mobility of Sr. The Nd isotopic compositions of the pegmatite and the Harney Peak Granite indicate that they were not derived primarily from the exposed metasedimentary rocks.  相似文献   


18.
Voluminous late Mesoproterozoic monzonite through granite of the Vernon Supersuite underlies an area of approximately 1300 km2 in the Highlands of northern New Jersey. The Vernon Supersuite consists of hastingsite±biotite-bearing granitoids of the Byram Intrusive Suite (BIS) and hedenbergite-bearing granitoids of the Lake Hopatcong Intrusive Suite (LHIS). These rocks have similar major and trace element abundances over a range of SiO2 from 58 to 75 wt.%, are metaluminous to weakly peraluminous, and have a distinctive A-type chemistry characterized by high contents of Y, Nb, Zr, LREE, and Ga/Al ratios, and low MgO, CaO, Sr and HREE. Whole-rock Rb–Sr isochrons of BIS granite yield an age of 1116±41 Ma and initial 87Sr/86Sr ratio of 0.70389, and of LHIS granite an age of 1095±9 Ma and initial 87Sr/86Sr ratio of 0.70520. Both suites have similar initial 143Nd/144Nd ratios of 0.511267 to 0.511345 (BIS) and 0.511359 to 0.511395 (LHIS). Values of Nd are moderately high and range from +1.21 to +2.74 in the BIS and +2.24 to +2.95 in the LHIS. Petrographic evidence, field relationships, geochemistry, and isotopic data support an interpretation of comagmatism and the derivation of both suites from a mantle-derived or a juvenile lower crustal parent with little crustal assimilation. Both suites crystallized under overlapping conditions controlled by PTfH2O. Lake Hopatcong magma crystallized at a liquidus temperature that approached 900°C and a pressure of about 6 kbar, and remained relatively anhydrous throughout its evolution. Initial PT conditions of the Byram magma were ≥850°C and about 5.5 kbar. BIS magma was emplaced contemporaneous with, or slightly preceding LHIS magma, and both magmas were emplaced during a compressional tectonic event prior to granulite facies metamorphism that occurred in the Highlands between 1080 and 1030 Ma.  相似文献   

19.
An investigation of the Pb isotopic compositions of plagioclase and sulfide in a stratigraphic interval including the UG2 chromitite of the eastern Bushveld Complex has been conducted to determine the Pb isotopic composition(s) of the magma(s) that crystallized to form this part of the intrusion, gain a better understanding of why coexisting plagioclase and sulfide commonly exhibit widely different Pb isotopic compositions, and explore the use of Pb isotopes in deducing post-accumulation history. Analyses were obtained in situ with a NuPlasma multicollector ICP-MS coupled with 193 nm Excimer or 213 nm lasers.Most plagioclase compositions fall on the 207Pb/204Pb vs 206Pb/204Pb geochron of 2.06 Ga, which is the solidification age of the intrusion. The measured ratios have not been affected by radiogenic ingrowth, and plagioclase generally remained closed to Pb exchange after initial cooling. The array of plagioclase compositions on the geochron is significantly larger than that defined by analytical error. This indicates that in terms of Pb at least two different magma compositions were present. The composition of the least radiogenic magma was approximated by that of the contemporaneous BSE with μ (238U/204Pb) and ω (232Th/204Pb) values of ≈9.0 and 35, respectively, suggesting a mantle derivation with little or no involvement of the continental crust, while the second magma possessed a Pb isotopic composition similar to the upper crust with μ ≈ 9.6.Compared to plagioclase, sulfides generally possess slightly higher 206Pb/204Pb ratios for equivalent 207Pb/204Pb ratios such that their compositions fall between the 2.06 and 1.86 Ga geochrons. The latter age is much younger than the cooling age. The data are interpreted to mean that the Bushveld Complex remained buried in the crust at temperatures of several hundred °C for about 200 Ma after solidification, and that any sulfides accessible to fluid continued to re-equilibrated during this time with more radiogenic Pb. The sulfide Pb may have been transported into the Bushveld Complex by fluids from an external reservoir when the rocks were still partially molten and thus permeable. Alternatively, the sulfide Pb may have originated mainly from radiogenic decay of U and Th present in minerals other than the sulfides in the immediately surrounding Bushveld rocks, followed by local redistribution of Pb by whatever fluid was present. Indeed, some sulfides are characterized by 208Pb/204Pb ratios sufficiently high that an external source is unlikely. This observation and the fact that the sulfides display small-scale heterogeneity suggest that most, if not all, of the radiogenic sulfide Pb was locally derived. It also implies that during the post-solidification, re-equilibration period there was no large-scale fluid-flow through the microfracture network because otherwise the isotopic heterogeneities would not have been preserved. The minerals in 2 of the 19 samples studied contain young Pb, presumably introduced by meteoric waters that permeated the macrofracture network.  相似文献   

20.
Geological observations and petrological and geochemical criteria are used to detect hybrid rocks at the endocontact of a dolerite dike. The hybrid rocks were produced when the material of a mafic intrusion mixed with a felsic melt. The latter was produced by the melting of the metamorphic rocks making up the Goloustnaya basement inlier of the Siberian craton, under the thermal effect of the intruded dike. Two age groups of zircon have been identified in the hybrid rock by SHRIMP analysis. The Paleoproterozoic age of inherited zircon (1902, 1864, 1859, and 1855 Ma) reflects the contribution of ancient sources to the hybrid-rock composition. The young, primary-magmatic, zircon grains, produced by melting at the endocontact of the mafic intrusion (494 ± 5 Ma), are coeval with the hybrid rocks, and their age indicates when the mafic rocks intruded the metamorphic framework. Dikes of close age, with similar geochemical characteristics, are present on the vast southern margin of the Siberian craton—from Goloustnaya to Biryusa salients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号