首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solute transport and chemical neutralization (pH 3 to 7) within a shallow heterogeneous aquifer producing acid mine drainage (AMD) are examined at an abandoned surface coal mine in West Virginia. The aquifer is undergoing partial neutralization by mixing with alkalinity from a leaking sludge disposal pond, extending in preferential zones controlled by aquifer heterogeneity. Hydraulic heads interpolated from wells indicate leakage from a central alkaline (pH 7.1, 0.72 meq/L alkalinity) sludge pond is a principal source of recharge. Chemically-conservative sodium, added to AMD during treatment and leaked into the aquifer with the sludge, develops a dispersion plume over a restricted portion of the aquifer that correlates with pH, hydraulic head, and dissolved metals distributions. Concentrations of aluminum, iron, sulfate and acidity display higher concentrations downgradient from the pond as sludge alkalinity is consumed along flow paths. Before reaching springs, most dissolved iron is oxidized and hydrolyzed, likely precipitating in the aquifer as a ferric hydroxide or hydroxysulfate phase. The spatial pattern of iron and aluminum concentrations suggests accelerated oxidation caused by gas transport along the outer slopes of the spoil. Dissolved aluminum concentrations increase with total acidity, suggesting that dissolution of silicate minerals results from acidity released by iron hydrolysis. Neutralization reactions and higher pH are favored in more highly permeable portions of the spoil, where ferrihydrite and aluminum hydroxysulfate minerals (such as basaluminite) are supersaturated. In acid-producing zones at pH < 4.5, jurbanite is near equilibrium and an aluminum-sulfate phase with similar properties may limit aluminum concentrations, but become undersaturated in zones of advancing neutralization. At this particular site, ferrous iron produced by pyrite oxidation is almost completely oxidized over short transport distances, allowing hydrolysis of iron and aluminum should sufficient alkalinity be added to these acid waters.  相似文献   

2.
Solute transport and chemical neutralization (pH 3 to 7) within a shallow heterogeneous aquifer producing acid mine drainage (AMD) are examined at an abandoned surface coal mine in West Virginia. The aquifer is undergoing partial neutralization by mixing with alkalinity from a leaking sludge disposal pond, extending in preferential zones controlled by aquifer heterogeneity. Hydraulic heads interpolated from wells indicate leakage from a central alkaline (pH 7.1, 0.72 meq/L alkalinity) sludge pond is a principal source of recharge. Chemically-conservative sodium, added to AMD during treatment and leaked into the aquifer with the sludge, develops a dispersion plume over a restricted portion of the aquifer that correlates with pH, hydraulic head, and dissolved metals distributions. Concentrations of aluminum, iron, sulfate and acidity display higher concentrations downgradient from the pond as sludge alkalinity is consumed along flow paths. Before reaching springs, most dissolved iron is oxidized and hydrolyzed, likely precipitating in the aquifer as a ferric hydroxide or hydroxysulfate phase. The spatial pattern of iron and aluminum concentrations suggests accelerated oxidation caused by gas transport along the outer slopes of the spoil. Dissolved aluminum concentrations increase with total acidity, suggesting that dissolution of silicate minerals results from acidity released by iron hydrolysis. Neutralization reactions and higher pH are favored in more highly permeable portions of the spoil, where ferrihydrite and aluminum hydroxysulfate minerals (such as basaluminite) are supersaturated. In acid-producing zones at pH < 4.5, jurbanite is near equilibrium and an aluminum-sulfate phase with similar properties may limit aluminum concentrations, but become undersaturated in zones of advancing neutralization. At this particular site, ferrous iron produced by pyrite oxidation is almost completely oxidized over short transport distances, allowing hydrolysis of iron and aluminum should sufficient alkalinity be added to these acid waters.  相似文献   

3.
污泥屏障渗透性及重金属阻截效果试验研究   总被引:1,自引:0,他引:1  
张虎元  杨博  高全全  张光伟 《岩土力学》2012,33(10):2910-2916
目前,废弃物处置场渗滤液中的重金属污染物只能依靠极低渗透性的水力屏障来控制,还不存在利用化学场专门拦截重金属污染物的反应型屏障。在有机结合生活污泥的低渗透性与丰富的有机质和厌氧微生物特性的基础上,提出“污泥屏障”的构想。研究利用柔性壁渗透仪测量不同有效应力作用下生活污泥试样的渗透系数,并对渗出液的化学性质进行了监测,验证污泥屏障的可行性。试验结果表明:随着有效应力的增大,污泥试样干密度提高,渗透系数的对数值随孔隙比的减小线性降低。试样内部微生物厌氧呼吸形成的生物膜和无机物沉淀以及黏土颗粒双电层厚度的增大,也是污泥渗透系数降低的原因,污泥渗透系数仅为 数量级。另外,污泥强烈吸附能力及厌氧微生物呼吸作用形成的中-弱碱性还原环境,对渗透液中的Zn和Cd都起到了很好的拦截作用。  相似文献   

4.
The limitations and feasibility of the land disposal of solid wastes containing organic solvents and refrigerants (chlorinated fluorocarbons) were investigated by evaluating the attenuation capacity of a hypothetical waste-disposal site by numerical modeling. The basic theorem of this approach was that the land disposal of wastes would be environmentally acceptable if subsurface attenuation reduced groundwater concentrations of organic compounds to concentrations that were less than health-based, water-quality criteria. Computer simulations indicated that the predicted concentrations of 13 of 33 organic compounds in groundwater would be less than their health-based criteria. Hence, solid wastes containing these compounds could be safely disposed at the site. The attenuation capacity of the site was insufficient to reduce concentrations of four compounds to safe levels without limiting the amount of mass available to leach into groundwater. Threshold masses based on time-dependent migration simulations were estimated for these compounds. The remaining 16 compounds, which consisted mainly of chlorinated hydrocarbons and fluorocarbons could not be safely landfilled without severe restrictions on the amounts disposed. These organic compounds were candidates to ban from land disposal.  相似文献   

5.
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.  相似文献   

6.
In the initial period of mining activities in the Idrija basin (the16th and the first half of the17th centuries), Hg ore processing was performed at various small-scale roasting sites in the woods surrounding Idrija, by roasting ore in earthen vessels. The recovery rate of this method was very low; about half of Hg was lost, causing soil contamination and considerable amounts of waste material that could potentially leach Hg into the surrounding environment. The main aims of present geochemical study were to determine the contents, vertical distribution and speciation of Hg in soils at the roasting site at Frbej?ene trate in order to verify the extreme pollution of ancient Hg ore roasting sites in the Idrija area and to establish their significance in the wider spatial contamination of soils and aquatic systems. Soil sampling was performed at the area of the former roasting site. The organic matter-rich surface soil layer (SOM) and underlying mineral soil were sampled at 63 sampling locations. Mercury speciation was performed using Hg thermo-desorption-AAS to distinguish cinnabar from potentially bioavailable forms. The results indicate extremely high Hg concentrations with a maximum of 37,000 mg/kg in SOM and 19,900 mg/kg in mineral soil. The established Hg median in soil was 370 mg/kg and in SOM 96.3 mg/kg. Spatial distributions of Hg in SOM and soil showed very high Hg contents in the central area and decreased rapidly with distance. The results of Hg thermo-desorption measurements indicated the presence of cinnabar (HgS) and Hg bound to organic or mineral soil matter. A significant portion (35–40%) of Hg in the investigated soil and SOM samples was comprised of non-cinnabar compounds, which are potentially bioavailable. It has been shown that soils contain high amounts of potentially transformable non-cinnabar Hg, which is available for surface leaching and runoff into the surrounding environment. Therefore, contaminated soils and roasted residues at the studied area are important for persistent Hg release into the aquatic ecosystem.  相似文献   

7.
Owing to its five decades in the chemical industry, Estarreja is one of the most important industrial areas in Portugal. Intensive industrial activity along with both direct discharge of the effluents into natural water streams and uncontrolled waste disposal on the ground has, throughout the years, had strong impact on health and welfare. Recently an association between industry and local authorities was created — ERASE. The main goal for this association is to find, in co-operation with the Portuguese Environmental Ministry, a cost-effective solution to deal with the soil/sediments contamination and solid waste problem.

The ERASE association planned to build a landfill for both solid waste and contaminated soil/sediments disposal. In order to determine more accurately the volume of material to be disposed of in the landfill, a site investigation was carried out during September/November 1998. The site investigation consisted mainly of systematic soil sampling at shallow depths, both within the industrial area and along the natural water streams.

The site investigation results revealed high concentrations of toxic pollutants, mainly heavy metals (namely As, Hg, Pb and Zn), in the soil of the industrial area. Much higher concentrations were found in the sediments of the water streams, several kilometres away from the industrial complex (the pollution source area).

In most cases, concentration increases with depth, reaching groundwater. Therefore the site investigation programme carried out could not determine the full extent of the contamination. Consequently, further studies were strongly recommended, which should include a wider and deeper investigation area and groundwater sampling.  相似文献   


8.
 An integrated geochemical and toxicological assessment of environmental mercury contamination and attendant human exposure in Honda Bay, Palawan was undertaken in 1995 following a nationally reported pollution scare centered on a coastal jetty, Sitio Honda Bay, constructed using approximately 1 million tons of tailings and beneficiation waste from a cinnabar mine. Mercury (Hg) data for marine and fluvial sediments, fish tissues and human hair indicate that the toxicological hazard is considerably lower than initially reported by state environment and health officials. Typical Hg concentrations in surficial Honda Bay sediments were found to lie within the global background range (<60 μg/kg). Downcore profiles provide no evidence of enhanced Hg fluxes coincident with the onset of mining and/or coastal tailings disposal. The mean and median Hg concentrations recorded in tissues of six species of Honda Bay fish are compliant with thresholds established by the US Environmental Protection Agency (US-EPA) for marketable stocks. Earlier reports of 'Minamata range' Hg concentrations in fish and shellfish from Honda Bay remain unsubstantiated. Geochemical analyses of samples of the Sitio Honda Bay substrate have confirmed the prevalence of solid-phase Hg concentrations to ca. 340 mg/kg. The speciation of Hg is, however, dominated by secondary oxides of low bioavailability. The mean Hg concentration in hair from Sitio Honda Bay residents (4.41 mg/kg) was found to be statistically analogous to that for a neighbouring coastal community unimpacted by the coastal disposal of mine waste. A negligible residential exposure factor is thus inferred for the former. Relatively high hair Hg burdens prevail throughout the coastal Honda Bay population, consistent with significant methyl Hg ingestion through daily fish consumption. The data presented provide no environmental or toxicological justification for immediate remedial action. Received: 14 May 1998/Accepted: 1 September 1998  相似文献   

9.
Total Hg concentrations have been measured for five box-core sediments collected seawards of the Augusta industrial area (SE Sicily). In more coastal sediments, upcore increasing Hg concentrations, exceeding the Hg background concentration estimated for the Strait of Sicily, indicate Hg contamination over time due to the industrial area development. Strong correlation between total organic C (TOC) and Hg concentrations was found only for core BX2, that displays organic C to total N (C/N) ratios indicative of autochthonous organic matter. For other sediments, high Hg enrichment factors with respect to TOC indicate, in addition to Hg trapping by TOC, other factors as responsible for Hg accumulation. In the presence of some contribution of detrital organic matter, Hg is mainly adsorbed onto the mineral component of the bottom sediments probably because TOC is saturated by Hg excess. Contaminant impact affected also the open sea environment. Main drivers of Hg flux towards the offshore were dredged materials, which repeatedly discharged sediment, resulting in substantial increases in TOC contents and high C/N ratios. Consistent with the geochemistry of recent turbidites, these anomalous sedimentary inputs induced sediment redox environment modifications, constrained by Mn peaks, which affected Hg distribution.  相似文献   

10.
污泥的处置及利用技术探讨   总被引:2,自引:1,他引:1  
查甫生  崔可锐  席培胜 《岩土力学》2008,29(Z1):555-558
污泥是污水处理厂污水处理的2次产物,如处理不当将会造成2次污染。随着人们环保意识的不断增强与环保力度的加大,如何有效地进行污泥的处治与处置已成为国内外环境岩土工程界函待解决的主要热点问题之一。在总结国内外相关文献资料的基础上,对国内外常用的污泥处置及利用技术进行总结与归纳,包括污泥的填埋、焚烧、农业利用、固化以及生物修复技术等,并对各种处置方法的适用性与优、缺点作出科学的分析与评价,可为污泥及污染土的处置及利用提供一定的参考作用。  相似文献   

11.
Immobilization of Cd,Zn and Pb in sewage sludge using red mud   总被引:2,自引:1,他引:1  
Sewage sludge is an inevitable end by-product of sewage treatment. Land application provides a cost-effective alternative for sewage sludge disposal. However, sewage sludge contains heavy metals that may limit its application. In this work, red mud was employed for the immobilization of heavy metals in sewage sludge. The effect of red mud amendment on heavy metal immobilization was evaluated using Toxicity Characteristic Leaching Procedure (TCLP) method. The TCLP results showed that the immobilization efficiency of Cd, Zn and Pb was 100, 92, and 82%, respectively, when sewage sludge was mixed with 10% red mud. Tests carried out in leaching columns demonstrated that heavy metal concentrations in the leachate of 10% red mud amended sludge were lower than those of the unamended sludge. Moreover, red mud decreased plant available heavy metal (Cd, Zn and Pb) content from 18.1, 17.2 and 14.6% to 6.9, 11.4 and 7.6%, respectively. Sequential chemical extraction experiments showed that after sludge was amended with 10% red mud, exchangeable fraction was reduced and iron and manganese oxides fraction was increased. Red mud amendment can effectively immobilize Cd, Zn and Pb in sewage sludge before land application.  相似文献   

12.
Sediment cores were collected from the Tilbury Tidal Basin in the Thames Estuary to determine the depositional history of metals in the estuary. Profiles of metals in sediments deposited in the lower Thames Estuary show a 30–50% decrease in concentration for Ag, Cd, Cu, Pb, and Zn, and a 70% decrease for Hg in recent decades. Historic depth soundings data showed the decreases in metal concentrations occurred between 1944 and 1966. The decline in sediment metal concentrations has been attributed to reduced inputs to the estuary, following updating of the major sewage treatment works in 1959 and 1963. This is indicated by the through-core distribution of Mn which implies that prior to 1960 the sediments were deposited in anoxic conditions, which subsequently improved. An increase in Mn concentrations observed in one of the cores has been attributed to increases in the dissolved oxygen of the estuarine waters resulting from the increased efficiency of the sewage treatment works.  相似文献   

13.
The Idrija mine was the second largest Hg mine in the world surpassed only by the Almaden mine in Spain. It has been estimated that almost 145,000 tons of Hg was produced during operation (1490-1995) of the mine. In the first decade of Hg mining in Idrija the ore was roasted in piles; after that it was roasted for 150 years, until 1652, in earthen vessels at various sites in the woods around Idrija. Pšenk is one out of 21 localities of ancient roasting sites established on the hills surrounding Idrija and one of the largest localities of roasting vessel fragments. The unique way of roasting very rich Hg ore at this site has resulted in soil contamination and considerable amounts of waste material that potentially leach Hg into the surrounding environment. The main aim of this study was to determine the distribution and the forms of Hg in contaminated soils in order to evaluate potential environmental risk. Detailed soil sampling was performed on 37,800 m2 area to establish the extent of Hg pollution and to investigate Hg transformations and transport characteristics through the 400 a-long period. A total of 156 soil (0-15 cm and 15-30 cm) and SOM (soil organic matter) samples were collected from 73 sampling points. Three soil profiles were sampled to determine vertical distribution of Hg. The main Hg phases were determined by the Hg-thermo-desorption technique. The measured Hg contents in soil samples in the study area vary from 5.5 to almost 9000 mg/kg with a median of 200 mg/kg. In SOM, Hg contents range from 1.4 to 4200 mg/kg with a median of 20 mg/kg. Extremely high Hg contents were found in soil profiles where the metal reaches 37,020 mg/kg. In general, Hg concentrations in all three profiles show a gradual decrease with depth with the minimum values between 140 mg/kg and 1080 mg/kg. The Hg-thermo-desorption curves indicate the presence of Hg in the form of cinnabar and that of Hg bound to organic or mineral soil matter. The distribution of Hg species in soil and SOM samples show almost equal distribution of cinnabar and non-cinnabar Hg compounds. The non-cinnabar fraction shows a little increase with depth, but cinnabar represents a high portion of total Hg (about 40%). Large amounts of potentially mobile and transformable non-cinnabar Hg compounds exist at the roasting site, which are potentially bioavailable.  相似文献   

14.
《Applied Geochemistry》1998,13(1):31-42
Organic material typically constitutes a substantial volume (∼ 90%) of the low-level radioactive wastes (LLRW) intended for near-surface disposal at Chalk River Laboratories (CRL), Ontario, Canada. These wastes can contain a large variety of organic materials, including paper, cardboard, plastic bags, used clothing, and mop heads. After emplacement in a disposal facility, leaching of the LLRW by water can mobilize inorganic and organic substances, ranging from small molecules such as acetic acid to unidentifiable material of colloidal size range. This study determined the potential for colloid formation produced by LLRW degradation, because colloid-facilitated transport of contaminants could affect the safety performance of a disposal facility.The decomposition of compacted LLRW was simulated by recirculating water in a closed system over several compacted bales of waste to determine the potential composition and colloid content of leachates. Size fractionation of organic matter was performed on leachate samples that had been aged for 18 months to simulate the microbial degradation of organic matter within leachates during migration out of the LLRW disposal facility. The aged leachates contained high concentrations of dissolved organic matter, ranging between 74 and 5074 mg/l as C. In most of the leachates, volatile fatty acids accounted for a significant fraction (up to 81%) of the dissolved organic carbon. Although 5–110 mg/l of organic colloids were observed in leachates, in most cases, the organic colloids made up a very small fraction of the total leached organic carbon. Therefore, since the complexation properties of dissolved and colloidal organics are probably similar, contaminants complexed to organics are most likely to be dissolved and not affected by colloid transport. The leachates also contained significant quantities of Fe and Al, which could potentially precipitate Fe and Al as colloids after oxidation. Although a significant portion of the dissolved Fe may have been produced by the corrosion of the ☐es used to contain the bales, the high Fe concentrations could be representative of leachates from LLRW that contain metallic Fe components. If Fe and Al colloids are stable, stable concentrations in LLRW leachates could be high enough to affect contaminant transport. Therefore, the Fe and Al content of LLRW should be minimized. The concentrations of natural colloids in sandy aquifers, such as those found at CRL are too low to affect contaminant migration significantly.  相似文献   

15.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

16.
通过测定土柱和淋洗液中重金属的含量,研究石灰岩质土壤应用粉煤灰污泥添加剂改良后重金属在土壤剖面上的分布移动特征及对地下水质的影响.结果表明:仅试验层内除As和Ni外,Zn、Cd、Pb、Cu、Cr、Hg含量明显增加,未出现明显向下移动的趋势;同时重金属淋出量明显增加,但未超过地下水Ⅲ级标准.初步认为与添加剂自身、重金属的特性及石灰岩质土壤滤层的截固作用相关.粉煤灰污泥经过合理的配施和预处理应用于石灰岩质矿区退化土壤的改良,短期内不会对地下水的质量产生明显的影响.  相似文献   

17.
Landfill site selection by using geographic information systems   总被引:3,自引:3,他引:3  
One of the serious and growing potential problems in most large urban areas is the shortage of land for waste disposal. Although there are some efforts to reduce and recover the waste, disposal in landfills is still the most common method for waste destination. An inappropriate landfill site may have negative environmental, economic and ecological impacts. Therefore, it should be selected carefully by considering both regulations and constraints on other sources. In this study, candidate sites for an appropriate landfill area in the vicinity of Ankara are determined by using the integration of geographic information systems and multicriteria decision analysis (MCDA). For this purpose, 16 input map layers including topography, settlements (urban centers and villages), roads (Highway E90 and village roads), railways, airport, wetlands, infrastructures (pipelines and power lines), slope, geology, land use, floodplains, aquifers and surface water are prepared and two different MCDA methods (simple additive weighting and analytic hierarchy process) are implemented to a geographical information system. Comparison of the maps produced by these two different methods shows that both methods yield conformable results. Field checks also confirm that the candidate sites agree well with the selected criteria.  相似文献   

18.
Mercury (Hg) concentrations and isotopic compositions were examined in shallow-water surface sediment (0-2 cm) from San Francisco (SF) Bay to determine the extent to which historic Hg mining contributes to current Hg contamination in SF Bay, and to assess the use of Hg isotopes to trace sources of contamination in estuaries. Inter-tidal and wetland sediment had total Hg (HgT) concentrations ranging from 161 to 1529 ng/g with no simple gradients of spatial variation. In contrast, inter-tidal and wetland sediment displayed a geographic gradient of δ202Hg values, ranging from −0.30‰ in the southern-most part of SF Bay (draining the New Almaden Hg District) to −0.99‰ in the northern-most part of SF Bay near the Sacramento-San Joaquin River Delta. Similar to SF Bay inter-tidal sediment, surface sediment from the Alviso Slough channel draining into South SF Bay had a δ202Hg value of −0.29‰, while surface sediment from the Cosumnes River and Sacramento-San Joaquin River Delta draining into north SF Bay had lower average δ202Hg values of −0.90‰ and −0.75‰, respectively. This isotopic trend suggests that Hg-contaminated sediment from the New Almaden Hg District mixes with Hg-contaminated sediment from a low δ202Hg source north of SF Bay. Tailings and thermally decomposed ore (calcine) from the New Idria Hg mine in the California Coast Range had average δ202Hg values of −0.37 and +0.03‰, respectively, showing that Hg calcination fractionates Hg isotopes resulting in Hg contamination from Hg(II) mine waste products with higher δ202Hg values than metallic Hg(0) produced from Hg mines. Thus, there is evidence for at least two distinct isotopic signals for Hg contamination in SF Bay: Hg associated with calcine waste materials at Hg mines in the Coast Range, such as New Almaden and New Idria; and Hg(0) produced from these mines and used in placer gold mines and/or in other industrial processes in the Sierra Nevada region and SF Bay area.  相似文献   

19.
固化/稳定化(S/S)是目前比较有效的一种污泥处置技术,是通过向污泥中添加固化剂材料,与污泥发生一系列的物理化学反应,提高污泥的力学强度和稳定污泥中的重金属污染物,从而达到污泥安全处置和资源化利用的目的,因此,探索高效、低廉和低碳的S/S技术一直是该领域的重点。根据近些年来国内外学者对该领域研究所取得的成果,着重从污泥的种类、固化剂种类、主要技术指标、关键影响因素及固化/稳定化机理等几个方面总结了该课题的研究现状及进展。得到以下主要认识:污泥按来源可分为河湖污泥、市政污泥和工业污泥3大类,由于不同来源污泥成分差别很大,处置方式也不尽相同;对于污泥的S/S处理,常用的固化剂可分为无机和有机两大类,且无机固化剂占主导,目前最流行的是水泥和石灰,还包括一些工业矿渣、黏土等作为辅助材料;S/S的优劣主要通过两个关键技术指标进行评价:固化体的无侧限抗压强度及浸出毒性;污泥的固化/稳定化效果主要受初始含水率、养护时间、固化剂种类、掺入量、pH值和Eh值等因素的影响;固化剂及其产物在污泥中形成骨架,并通过物理化学作用与污泥颗粒胶结和填充大的孔隙,从而起到固化增强作用;固化剂及其产物主要通过物理包裹、沉淀和吸附作用,将污泥中的有害物质封闭在固化体内,从而达到无害化、稳定化目的。最后,针对目前污泥S/S技术研究的不足,提出了今后该课题的研究重点及方向,主要包括:改善污泥的前期脱水效率、进一步掌握固化体的变形特性、开发针对多种重金属离子的综合S/S技术、建立重金属离子固定/溶出模型和迁移模型、研发新型固化剂等。  相似文献   

20.
范少强  曹恩伟 《江苏地质》1998,22(4):223-226
污泥堆肥化后的土地利用是污泥处理处置的重要方法之一。经过对荆马河底泥接种堆置处理,揭示出污泥中重金属的形态发生明显的变化。荆马河底泥中的重金属污染物主要以结合态和残渣态的形式存在,水溶态和交换态的量很小,经接种堆置处理后,水溶态和交换态量大幅削减,结合态和残渣态量有所增加,总量变化不大,生物学方法和化学方法测定都表明,处理后的底泥生物毒性有明显降低,重金属的生物有效性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号