首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.  相似文献   

2.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

3.
The importance of thermal conduction on hot accretion flow is confirmed by observations of hot gas that surrounds Sgr A? and a few other nearby galactic nuclei. On the other hand, the existence of outflow in accretion flows is confirmed by observations and magnetohydrodynamic (MHD) simulations. In this research, we study the influence of both thermal conduction and outflow on hot accretion flows with ordered magnetic field. Since the inner regions of hot accretion flows are, in many cases, collisionless with an electron mean free path due to Coulomb collision larger than the radius, we use a saturated form of thermal conduction, as is appropriate for weakly collisional systems. We also consider the influence of outflow on accretion flow as a sink for mass, and the radial and the angular momentum, and energy taken away from or deposited into the inflow by outflow. The magnetic field is assumed to have a toroidal component and a vertical component as well as a stochastic component. We use a radially self-similar method to solve the integrated equations that govern the behavior of such accretion flows. The solutions show that with an ordered magnetic field, both the surface density and the sound speed decrease, while the radial and angular velocities increase. We found that a hot accretion flow with thermal conduction rotates more quickly and accretes more slowly than that without thermal conduction. Moreover, thermal conduction reduces the influences of the ordered magnetic field on the angular velocities and the sound speed. The study of this model with the magnitude of outflow parameters implies that the gas temperature decreases due to mass, angular momentum, and energy loss. This property of outflow decreases for high thermal conduction.  相似文献   

4.
The observation of the hot gas surrounding Sgr A * and a few other nearby galactic nuclei imply that electron and proton mean free paths are comparable to the gas capture radius. So, the hot accretion flows are likely to proceed under week-collision conditions. Hence, thermal conduction has been suggested as a possible mechanism by which the sufficient extra heating is provided in hot advection-dominated accretion flow (ADAF) accretion discs. We consider the effects of thermal conduction in the presence of a toroidal magnetic field in an ADAF around a compact object. For a steady-state structure of such accretion flows, a set of self-similar solutions are presented. We find two types of solutions which represent high and slow accretion rate. They have different behaviours with saturated thermal conduction parameter, φ.  相似文献   

5.
From a previous analysis of a long series of geomagnetic data, we came to the conclusion that, during 91.5% of the time, geomagnetic activity is controlled by the solar wind flow at the Earth's orbit.In this paper, we consider the flow of the solar wind plasma in a coronal field whose source is a dipole. The temporal evolution of the dipole source as well as any small scale evolution occurring in the associated coronal field topology can be closely monitored from the latitudinal distribution of the wind velocity.In the geomagnetic data series, the index Aa is closely linked to the wind velocity at the power 2.25. From this data set, we can reconstruct the behavior of the solar dipole field from 1868 onward.The main results of our analysis are as follows. The solar cycle has two distinct components, dipole and toroidal, of which the respective cycles are out of phase. The toroidal component is strongly linked, with a 5–6 yr delay, to the preceding dipole component. This finding is in contradistinction to the view that the dipole field is a result of the poleward migration of the decaying toroidal field. This result should contribute to improve our understanding of the Sun's cyclical behaviour.  相似文献   

6.
We investigate the magnetic geometry of the active G8 dwarf ξ Bootis A (ξ Boo A), from spectropolarimetric observations obtained in 2003 with the MuSiCoS échelle spectropolarimeter at the Télescope Bernard Lyot (Observatoire du Pic du Midi, France). We repeatedly detect a photospheric magnetic field, with periodic variations consistent with rotational modulation. Circularly polarized (Stokes V) line profiles present a systematic asymmetry, showing up as an excess in amplitude and area of the blue lobe of the profiles. Direct modelling of Stokes V profiles suggests that the global magnetic field is composed of two main components, with an inclined dipole and a large-scale toroidal field. We derive a dipole intensity of about 40 G, with an inclination of 35° of the dipole with respect to the rotation axis. The toroidal field strength is of the order of 120 G. A noticeable evolution of the field geometry is observed over the 40 nights of our observation window and results in an increase in field strength and dipole inclination.
This study is the first step of a long-term monitoring of ξ Boo A and other active solar-type stars, with the aim of investigating secular fluctuations of stellar magnetic geometries induced by activity cycles.  相似文献   

7.
Previously developed solutions for pure toroidal mode Alfvén waves with finite ionosphere conductivities are modified to apply both inside and outside the plasmapause.Detailed diagrams are provided to illustrate the effect of realistic ionosphere conductances on the wave-forms. As well as graphs of wave-period, these include: (a) half-wave solutions showing the effect of dipole field distortion and consequent enhancement of ionosphere electric fields; (b) half-wave solutions with low damping that are symmetric and asymmetric about the equatorial plane; (c) highly-damped half-wave and quarter-wave solutions with wave admittance at the ionosphere nearly equal to the ionosphere conductance; (d) a quarter-wave solution with low damping that has a “near-node” of electric field at one ionosphere and an antinode of electric field at the other.  相似文献   

8.
The standard thin accretion disk model predicts that the inner regions of alpha model disks, where radiation pressure is dominant, are thermally and viscously unstable. However, observations show that the bright X-ray binaries and AGN accretion disks, corresponding to radiation-pressure thin disks, are stable. In this paper, we reconsider the linear and local instability of accretion disks in the presence of a toroidal magnetic field. In the basic equations, we consider physical quantities such as advection, thermal conduction, arbitrary viscosity, and an arbitrary cooling function also. A fifth order diffusion equation is obtained and is solved numerically. The solutions are compared to non-magnetic cases. The results show that the toroidal magnetic field can make the thermal instability in radiation pressure-dominated slim disks disappear if ? m ≥0.3. However, it causes a more thermal instability in radiation pressure alpha disks without advection. Also, we consider the thermal instability in accretion disks with other values of the viscosity and obtain a general criterion for thermal instability in the long-wavelength limit and in the presence of a toroidal magnetic field.  相似文献   

9.
The meridional and azimuthal electric wave fields are considered as the characteristic toroidal and poloidal components. Neglecting the exchange of energy between these fields leads to a toroidal mode wave equation which retains the principal longitudinal or asymmetric contribution. The asymmetric spectrum appears as a logical extension of the results for the symmetric field line oscillations. The model for this study consists of a dipole field magnetized plasma, whose density is commensurate with conditions in the plasmapause. Eigenperiods are calculated for a broad range of asymmetric modes. Because of the similarity in the latitudinal variation between the symmetric and asymmetric periods, it is imperative to revise current idealized magnetospheric models and incorporate such similarity in future models.  相似文献   

10.
Doing numerical calculations of axially symmetric force-free fields, Milsom and Wright (1976) have noticed that there seem to be no solutions if the toroidal component of the field exceeds a certain limit. In the present paper this problem is reexamined in the approximation of a plane stellar surface using a very simple analytic approximation. The results of Milsom and Wright (1976) are confirmed but, in contrast to their interpretation, it is shown that these limitations do not indicate the possibility of sudden changes of the topology of the magnetic field. This is because in a stellar atmosphere the toroidal component of the surface magnetic field is no independent quantity but is produced by shearing motions in the star which will prevent the toroidal magnetic field from exceeding its maximum value. To study the possibility of sudden changes in the magnetic field, which could cause stellar flares, the calculations are re-done prescribing the motion of the magnetic footpoints (shear in the stellar surface) instead of the toroidal component of the surface field. Using the same mathematical formalism it is found that no sudden changes can occur for configurations where all field lines connect to the stellar surface but that sudden changes may be possible for a more complicated field topology.  相似文献   

11.
The equations governing general relativistic, spherically symmetric, hydrodynamic accretion of polytropic fluid on to black holes are solved in the Schwarzschild metric to investigate some of the transonic properties of the flow. Only stationary solutions are discussed. For such accretion, it has been shown that real physical sonic points may form even for flow with   γ <4/3  or   γ >5/3  . The behaviour of some flow variables in the close vicinity of the event horizon is studied as a function of specific energy and the polytropic index of the flow.  相似文献   

12.
There is still no consensus as to what causes galactic discs to become warped. Successful models should account for the frequent occurrence of warps in quite isolated galaxies, their amplitude as well as the observed azimuthal and vertical distributions of the H  i layer. Intergalactic accretion flows and intergalactic magnetic fields may bend the outer parts of spiral galaxies. In this paper we consider the viability of these non-gravitational torques to take the gas off the plane. We show that magnetically generated warps are clearly flawed because they would wrap up into a spiral in less than two or three galactic rotations. The inclusion of any magnetic diffusivity to dilute the wrapping effect causes the amplitude of the warp to damp. We also consider the observational consequences of the accretion of an intergalactic plane-parallel flow at infinity. We have computed the amplitude and warp asymmetry in the accretion model, for a disc embedded in a flattened dark matter halo, including self-consistently the contribution of the modes with azimuthal wavenumbers   m = 0  and   m = 1  . Since the m = 0 component, giving a U-shaped profile, is not negligible compared to the m = 1 component, this model predicts quite asymmetric warps, maximum gas displacements on the two sides in the ratio 3 : 2 for the preferred Galactic parameters, and the presence of a fraction ∼3.5 per cent of U-shaped warps, at least. The azimuthal dependence of the moment transfer by the ram pressure would produce a strong asymmetry in the thickness of the H  i layer and asymmetric density distributions in z , in conflict with observational data for the warp in our Galaxy and in external galaxies. The amount of accretion that is required to explain the Galactic warp would give gas scaleheights in the far outer disc that are too small. We conclude that accretion of a flow with no net angular momentum cannot be the main and only cause of warps.  相似文献   

13.
14.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

15.
For low angular momentum axially symmetric accretion flow maintained in hydrostatic equilibrium along the vertical direction, the value of the Mach number at the critical points deviates from unity, resulting in the non-isomorphism of the critical and the sonic points. This introduces several undesirable complexities while analytically dealing with the stationary integral accretion solutions and the corresponding phase portraits. We propose that the introduction of an effective dynamical sound speed may resolve the issue in an elegant way. We linear perturb the full spacetime-dependent general relativistic Euler and the continuity equations governing the structure and the dynamics of accretion disc in vertical equilibrium around Schwarzschild black holes and identify the sonic metric embedded within the stationary background flow. Such metric describes the propagation of the linear acoustic perturbation inside the accretion flow. We construct the wave equation corresponding to that acoustic perturbation and find the speed of propagation of such perturbation. We finally show that the ordinary thermodynamic sound speed should be substituted by the speed of propagation of the linear acoustic wave which has been obtained through the dynamical perturbation. Such substitution will make the value of Mach number at the critical point to be equal to unity. Use of the aforementioned effective sound speed will lead to a modified stationary disc structure where the critical and the sonic points will be identical.  相似文献   

16.
We present a 2.5D magnetohydrodynamic (MHD) simulation of the acceleration of a collimated jet from a magnetized accretion disk. We employ a MHD Adaptive Mesh Refinement (AMR) code (FLASH—University of Chicago). Thanks to this tool we can follow the evolution of the system for many dynamical timescales with a high-spatial resolution. Assuming an initial condition in which a Keplerian disk, thus with no accretion motions, is threaded by a uniform poloidal magnetic field, we show how both the accretion flow and the acceleration of the outflow occur, and we present in detail which are the forces responsible for the jet launching and collimation. Our simulation also shows how the collimating forces due to the self-generated toroidal magnetic field can produce some peculiar knotty features.  相似文献   

17.
We present 2.5D time-dependent simulations of the non-linear evolution of non-relativistic outflows from the surface of Keplerian accretion discs. The gas is accelerated from the surface of the disc (which is a fixed platform in these simulations) into a cold corona in stable hydrostatic equilibrium. We explore the dependence of the resulting jet characteristics upon the mass loading of the winds. Two initial configurations of the threading disc magnetic field are studied: a potential field and a uniform vertical field configuration.
We show that the nature of the resulting highly collimated, jet-like outflows (steady or episodic) is determined by the mass load of the disc wind. The mass load controls the interplay between the collimating effects of the toroidal field and the kinetic energy density in the outflow. In this regard, we demonstrate that the onset of episodic behaviour of jets appears to be determined by the quantity     which compares the speed for a toroidal Alfvén wave to cross the diameter of the jet, with the flow speed v p along the jet. This quantity decreases with increasing load. For sufficiently large N (small mass loads), disturbances appear to grow leading to instabilities and shocks. Knots are then generated and the outflow becomes episodic. These effects are qualitatively independent of the initial magnetic configuration that we employed and are probably generic to a wide variety of magnetized accretion disc models.  相似文献   

18.
19.
The secular evolution of the purely general relativistic low angular momentum accretion flow around a spinning black hole is shown to exhibit hysteresis effects. This confirms that a stationary shock is an integral part of such an accretion disc in the Kerr metric. The equations describing the space gradient of the dynamical flow velocity of the accreting matter have been shown to be equivalent to a first order autonomous dynamical systems. Fixed point analysis ensures that such flow must be multi-transonic for certain astrophysically relevant initial boundary conditions. Contrary to the existing consensus in the literature, the critical points and the sonic points are proved not to be isomorphic in general, they can form in a completely different length scales. Physically acceptable global transonic solutions must produce odd number of critical points. Homoclinic orbits for the flow possessing multiple critical points select the critical point with the higher entropy accretion rate, confirming that the entropy accretion rate is the degeneracy removing agent in the system. However, heteroclinic orbits are also observed for some special situation, where both the saddle type critical points of the flow configuration possesses identical entropy accretion rate. Topologies with heteroclinic orbits are thus the only allowed non-removable degenerate solutions for accretion flow with multiple critical points, and are shown to be structurally unstable. Depending on suitable initial boundary conditions, a homoclinic trajectory can be combined with a standard non-homoclinic orbit through an energy preserving Rankine-Hugoniot type of stationary shock, and multi-critical accretion flow then becomes truly multi-transonic. An effective Lyapunov index has been proposed to analytically confirm why certain class of transonic flow cannot accommodate shock solutions even if it produces multiple critical points.  相似文献   

20.
The dynamics of accretion discs around galactic and extragalactic black holes may be influenced by their magnetic field. In this paper, we generalize the fully relativistic theory of stationary axisymmetric tori in Kerr metric of Abramowicz, Jaroszynski & Sikora by including strong toroidal magnetic field and construct analytic solutions for barotropic tori with constant angular momentum. This development is particularly important for the general relativistic computational magnetohydrodynamics that suffers from the lack of exact analytic solutions that are needed to test computer codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号