首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstructions of past environmental changes are critical for understanding the natural variability of Earth's climate system and for providing a context for present and future global change. Radiocarbon-dated lake sediments from Lake CF3, northeastern Baffin Island, Arctic Canada, are used to reconstruct past environmental conditions over the last 11,200 years. Numerous proxies, including chironomid-inferred July air temperatures, diatom-inferred lakewater pH, and sediment organic matter, reveal a pronounced Holocene thermal maximum as much as 5°C warmer than historic summer temperatures from 10,000 to 8500 cal yr B.P. Following rapid cooling 8500 cal yr B.P., Lake CF3 proxies indicate cooling through the late Holocene. At many sites in northeastern Canada, the Holocene thermal maximum occurred later than at Lake CF3; this late onset of Holocene warmth is generally attributed to the impacts of the decaying Laurentide Ice Sheet on early Holocene temperatures in northeastern Canada. However, the lacustrine proxies in Lake CF3 apparently responded to insolation-driven warmth, despite the proximity of Lake CF3 to the Laurentide Ice Sheet and its meltwater. The magnitude and timing of the Holocene thermal maximum at Lake CF3 indicate that temperatures and environmental conditions at this site are highly sensitive to changes in radiative forcing.  相似文献   

2.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
早全新世降温事件的湖泊沉积证据   总被引:12,自引:1,他引:12  
我国华北干旱-半干旱区封闭湖泊流域化学风化历史记录了全新世以来次级的气候环境波动过程。高精度的沉积物地球化学、物理及生物参数变化表明,在全新世早-中期过渡阶段存在一次强降温气候事件,具体表现为流域化学风化减弱(高Rb/Sr比)、湖泊产生力减弱(低有机碳)以及湖泊水位下降。虽然该事件的寒冷程度比Younger Dryas弱,但是其与来自湖沼(包括北极、非洲、北美、西欧、青藏高原、祁连山等)、海洋(比北大西洋、地中海、加勒比海等)、欧-美大陆生物组合、极地冰芯等在内的环境记录的冷事件发生时间基本一致,集中发生于8.0-8.5ka B.P.之间。  相似文献   

4.
Lacustrine sediments from southeastern Arabia reveal variations in lake level corresponding to changes in the strength and duration of Indian Ocean Monsoon (IOM) summer rainfall and winter cyclonic rainfall. The late glacial/Holocene transition of the region was characterised by the development of mega-linear dunes. These dunes became stabilised and vegetated during the early Holocene and interdunal lakes formed in response to the incursion of the IOM at approximately 8500 cal yr BP with the development of C3 dominated savanna grasslands. The IOM weakened ca. 6000 cal yr BP with the onset of regional aridity, aeolian sedimentation and dune reactivation and accretion. Despite this reduction in precipitation, the lake was maintained by winter dominated rainfall. There was a shift to drier adapted C4 grasslands across the dune field. Lake sediment geochemical analyses record precipitation minima at 8200, 5000 and 4200 cal yr BP that coincide with Bond events in the North Atlantic. A number of these events correspond with changes in cultural periods, suggesting that climate was a key mechanism affecting human occupation and exploitation of this region.  相似文献   

5.
Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published δ18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin.  相似文献   

6.
The Holocene evolution of Rhone River clastic sediment supply in Lake Le Bourget is documented by sub-bottom seismic profiling and multidisciplinary analysis of well-dated sediment cores. Six high-amplitude reflectors within the lacustrine drape can be correlated to periods of enhanced inter- and underflow deposition in sediment cores. Based on the synthesis of major environmental changes in the NW Alps and on the age-depth model covering the past 7500 years in Lake Le Bourget, periods of enhanced Rhone River flood events in the lake can be related to abrupt climate changes and/or to increasing land use since c. 2700 cal. yr BP. For example, significant land use under rather stable climate conditions during the Roman Empire may be responsible for large flood deposits in the northern part of Lake Le Bourget between AD 966 and 1093. However, during the Little Ice Age (LIA), well-documented major environmental changes in the catchment area essentially resulted from climate change and formed basin-wide major flood deposits in Lake Le Bourget. Up to five 'LIA-like' Holocene cold periods developing enhanced Rhone River flooding activity in Lake Le Bourget are documented at c. 7200, 5200, 2800, 1600 and 200 cal. yr BP. These abrupt climate changes were associated in the NW Alps with Mont Blanc glacier advances, enhanced glaciofluvial regimes and high lake levels. Correlations with European lake level fluctuations and winter precipitation regimes inferred from glacier fluctuations in western Norway suggest that these five Holocene cooling events at 45°N were associated with enhanced westerlies, possibly resulting from a persistent negative mode of the North Atlantic Oscillation.  相似文献   

7.
A bottomland flora that prevailed between 9900 and 6000 cal yr B.P. in a North Carolina stream valley may not reflect a regionally much wetter Atlantic climate, coeval with record drought in the Great Plains region and assumed dry Gulf coastal conditions. Such conditions were inferred for 6000 ± 1000 yr ago when the Bermuda High may have consistently occupied summer positions far to the NE. Arid episodes coeval with the Little River local wet interval are known from eolian sediments and pollen spectra in the Atlantic and the Gulf coastal plain. For multiple reasons, the regional extent, intensity, and duration of coastal aridity and alternating wet phases and the Bermuda High positions are not yet adequately constrained. The climate and edaphic causes for the steadily growing predominance of southern pines over hardwoods, achieved between 8900 and 4200 cal yr B.P. at different sites at different times are similarly still unresolved. New data from Shelby Lake, AL, reconfirms that no credible field or other proxy evidence exists for a previously postulated “catastrophic Gulf hurricane phase” in the late Holocene.  相似文献   

8.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

9.
Recent studies of lake-level fluctuations during the last deglaciation in eastern France (Jura Mountains and Pre-Alps) and on the Swiss Plateau show distinct phases of higher water level developing at the beginning and during the latter part of Greenland Stade 1 (i.e., Younger Dryas event) and punctuating the early Holocene period at 11,250-11,050, 10,300-10,000, 9550-9150, 8300-8050, and 7550-7250 cal yr B.P. The phases at 11,250-11,050 and 8300-8050 cal yr B.P. appear to be related to the cool Preboreal Oscillation and the 8200 yr event assumed to be associated with deglaciation events. A comparison of this mid-European lake-level record with the outbursts from proglacial Lake Agassiz in North America suggests that, between 13,000 and 8000 cal yr B.P., phases of positive water balance were the response in west-central Europe to climate cooling episodes, which were induced by perturbation of the thermohaline circulation due to sudden freshwater releases to oceans. This probably was in response to a southward migration of the Atlantic Westerly Jet and its associated cyclonic track. Moreover, it is hypothesized that, during the early Holocene, varying solar activity could have been a crucial factor by amplifying or reducing the possible effects of Lake Agassiz outbursts on the climate.  相似文献   

10.
Lake Bosumtwi is one of the most widely studied palaeoclimate archives in West Africa. Results from numerous AMS 14C dates of samples from four piston cores from Lake Bosumtwi show that an abrupt sedimentary transition from a mid-Holocene sapropel to calcareous laminated muds occurred at about 3200 cal yr B.P. High-resolution analyses of the nitrogen isotopic composition of organic matter across this transition confirm its abrupt nature, and suggest that the change may signal a step toward increased aridity and intensified surface winds that affected western equatorial Africa from Ghana to the Congo basin. Northern and Eastern Africa experienced a similar abrupt shift toward aridity during the late Holocene, but at about 5000 cal yr B.P., a difference in timing that illustrates the regional nature of climate changes during the Holocene and the importance of feedback mechanisms in regulating Holocene climate variability. Furthermore, an abrupt change at about 3000 cal yr B.P. occurs at several sites adjacent to the tropical and subtropical Atlantic, which may hint at major changes in the surface temperatures of the tropical Atlantic and/or Pacific at this time.  相似文献   

11.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

12.
Palynological and sedimentological data from Lake Telmen, in north-central Mongolia, permit qualitative reconstruction of relative changes in moisture balance throughout the mid to late Holocene. The climate of the Atlantic period (7500–4500 yr ago) was relatively arid, indicating that Lake Telmen lay beyond the region of enhanced precipitation delivered by the expanded Asian monsoon. Maximum humidity is recorded between 4500 and 1600 cal yr B.P., during the Subboreal (4500–2500 yr ago) and early Subatlantic (2500 yr–present) periods. Additional humid intervals during the Medieval Warm Epoch (1000–1300 A.D. or 950–650 ago) and the Little Ice Age (1500– 1900 A.D. or 450–50 yr B.P.) demonstrate the lack of long-term correlation between temperature and moisture availability in this region. A brief aridification centered around 1410 cal yr B.P. encompasses a decade of cold temperatures and summer frost between A.D. 536 and 545 (1414–1405 yr B.P.) inferred from records of Mongolian tree-ring widths. These data suggest that steppe vegetation of the Lake Telmen region is sensitive to centennial- and decadal-scale climatic perturbations.  相似文献   

13.
To investigate the Holocene climate and treeline dynamics in the European Russian Arctic, we analysed sediment pollen, conifer stomata, and plant macrofossils from Lake Kharinei, a tundra lake near the treeline in the Pechora area. We present quantitative summer temperature reconstructions from Lake Kharinei and Lake Tumbulovaty, a previously studied lake in the same region, using a pollen–climate transfer function based on a new calibration set from northern European Russia. Our records suggest that the early-Holocene summer temperatures from 11,500 cal yr BP onwards were already slightly higher than at present, followed by a stable Holocene Thermal Maximum (HTM) at 8000–3500 cal yr BP when summer temperatures in the tundra were ca. 3°C above present-day values. A Picea forest surrounded Lake Kharinei during the HTM, reaching 150 km north of the present taiga limit. The HTM ended with a temperature drop at 3500–2500 cal yr BP associated with permafrost initiation in the region. Mixed spruce forest began to disappear around Lake Kharinei at ca. 3500 cal yr BP, with the last tree macrofossils recorded at ca. 2500 cal yr BP, suggesting that the present wide tundra zone in the Pechora region formed during the last ca. 3500 yr.  相似文献   

14.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

15.
A Holocene lake sediment record is presented from Lake N14 situated on Angissoq Island 15 km off the main coast of southern Greenland. The palaeoclimatic development has been interpreted on the basis of flux and percentage content of biogenic silica, clastic material, organic material and sulphur as well as sedimentation rate, moss content and magnetic susceptibility. A total of 43 radiocarbon dates has ensured a reliable chronology. It is argued that varying sediment composition mainly reflects changing precipitation. By analogy with the present meteorological conditions in southern Greenland, Holocene climate development is inferred. Between 11 550 and 9300 cal. yr BP temperature and precipitation increase markedly, but this period is climatically unstable. From 9300 yr BP conditions become more stable and a Holocene climatic optimum, characterised by warm and humid conditions, is observed from 8000 to 5000 cal. yr BP. From 4700 cal. yr BP the first signs of a climatic deterioration are observed, and from 3700 cal. yr BP the climate has become more dry and cold. Superimposed on the climatic long‐term trend is climate variability on a centennial time‐scale that increases in amplitude after 3700 cal. yr BP. A climatic scenario related to the strength and position of the Greenland high‐pressure cell and the Iceland low‐pressure cell is proposed to explain the Holocene centennial climate variability. A comparison of the Lake N14 record with a terrestrial as well as a marine record from the eastern North Atlantic Ocean suggests that the centennial climate variability was uniform over large areas at certain times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The pattern of climate change in the Southern Hemisphere during the Younger Dryas (YD) chronozone provides essential constraint on mechanisms of abrupt climate change only if accurate, high-precision chronologies are obtained. A climate reversal reported previously at Kaipo bog, New Zealand, had been dated between 13,600 and 12,600 cal yr B.P. and appeared to asynchronously overlap the YD chron, but the chronology, based on conventionally radiocarbon-dated bulk sediment samples, left the precise timing questionable. We report a new high-resolution AMS 14C chronology for the Kaipo record that confirms the original chronology and provides further evidence for a mid-latitude Southern Ocean cooling event dated between 13,800 and 12,400 cal yr B.P. (2σ range), roughly equivalent to the Antarctic Cold Reversal.  相似文献   

17.
We present two new quantitative July mean temperature (Tjul) reconstructions from the Arctic tree-line region in the Kola Peninsula in north-western Russia. The reconstructions are based on fossil pollen records and cover the Younger Dryas stadial and the Holocene. The inferred temperatures are less reliable during the Younger Dryas because of the poorer fit between the fossil pollen samples and the modern samples in the calibration set than during the Holocene. The results suggest that the Younger Dryas Tjul in the region was 8.0–10.0°C, being 2.0–3.0°C lower than at present. The Holocene summer temperature maximum dates to 7500–6500 cal yr BP, with Tjul about 1.5°C higher than at present. These new records contribute to our understanding of summer temperature changes along the northern-European tree-line region. The Holocene trends are consistent in most of the independent records from the Fennoscandian–Kola tree-line region, with the beginning of the Holocene thermal maximum no sooner than at about 8000 cal yr BP. In the few existing temperature-related records farther east in the Russian Arctic tree line, the period of highest summer temperature begins already at about 10,000 cal yr BP. This difference may reflect the strong influence of the Atlantic coastal current on the atmospheric circulation pattern and the thermal behaviour of the tree-line region on the Atlantic seaboard, and the more direct influence of the summer solar insolation on summer temperature in the region east of the Kola Peninsula.  相似文献   

18.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial-interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.  相似文献   

20.
Analyses of sediment cores from Jellybean Lake, a small, evaporation-insensitive groundwater-fed lake, provide a record of changes in North Pacific atmospheric circulation for the last ∼7500 yr at 5- to 30-yr resolution. Isotope hydrology data from the southern Yukon indicate that the oxygen isotope composition of water from Jellybean Lake reflects the composition of mean-annual precipitation, δ18Op. Recent changes in the δ18O of Jellybean sedimentary calcite (δ18Oca) correspond to changes in the North Pacific Index (NPI), a measure of the intensity and position of the Aleutian Low (AL) pressure system. This suggests that δ18Op variability was related to the degree of fractionation during moisture transport from the Gulf of Alaska across the St. Elias Mountains and that Holocene shifts were controlled by the intensity and position of the AL. Following this model, between ∼7500 and 4500 cal yr B.P., long-term trends suggest a predominantly weaker and/or westward AL. Between ∼4500 and 3000 cal yr B.P. the AL shifted eastward or intensified before shifting westward or weakening between ∼3000 and 2000 cal yr B.P. Rapid shifts eastward and/or intensification occurred ∼1200 and 300 cal yr B.P. Holocene changes in North Pacific atmospheric circulation inferred from Jellybean Lake oxygen isotopes correspond with late Holocene glacial advances in the St. Elias Mountains, changes in North Pacific salmon abundance, and shifts in atmospheric circulation over the Beaufort Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号