首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present low–medium resolution optical spectroscopy of the eclipsing AM Her system MN Hya (RX J0929–24). We determine the magnetic field strength at the primary accretion region of the white dwarf to be 42 MG from the spacing of cyclotron features visible during π ∼ 0.4–0.7. From spectra taken during the eclipse we find that the secondary has an M3–4 spectral type. Combined with the eclipse photometry of Sekiguchi, Nakada &38; Bassett and an estimate of the interstellar extinction we find a distance of ∼300–700 pc. We find unusual line variations at π ∼ 0.9: Hα is seen in absorption and emission. This is at the same point in the orbital phase at which a prominent absorption dip is seen in soft X-rays.  相似文献   

2.
CP Tuc (AX J2315–592) shows a dip in X-rays which lasts for approximately half the binary orbit and is deeper in soft X-rays compared with hard X-rays. It has been proposed that this dip is due to the accretion stream obscuring the accretion region from view. If CP Tuc were a polar, as has been suggested, then the length of such a dip would make it unique amongst polars since in those polars in which a dip is seen in hard X-rays the dip lasts for only 0.1 of the orbit. We present optical polarimetry and RXTE observations of CP Tuc which show circular polarization levels of ∼10 per cent and find evidence for only one photometric period. These data confirm CP Tuc as a polar. Our modelling of the polarization data implies that the X-ray dip is due to the bulk of the primary accretion region being self-eclipsed by the white dwarf. The energy dependence of the dip is due to a combination of this self-eclipse and also the presence of an X-ray temperature gradient over the primary accretion region.  相似文献   

3.
We present the XMM–Newton X-ray eclipse light curve of the dwarf nova OY Car. The eclipse ingress and egress are well resolved for the first time in any dwarf nova placing strong constraints on the size and the location of the X-ray emitting region. We find good fits to a simple linear eclipse model, giving ingress/egress durations of  30 ± 3 s (Δφorb= 0.0054 ± 0.0005)  . Remarkably, this is shorter than the ingress/egress duration of the sharp eclipse in the optical, as measured by Wood et al. (1989) and ascribed to the white dwarf  (43 ± 2 s)  . We also find that the X-ray eclipse is narrower than the optical eclipse by  14 ± 2 s  , which is precisely the difference required to align the second and third contact points of the X-ray and optical eclipses. We discuss these results and conclude that X-ray emission in OY Car arises most likely from the polar regions of the white dwarf.
Our data were originally reported by Ramsay et al. (2001b) , but they did not make a quantitative measurement of eclipse parameters. We have also corrected important timing anomalies present in the data available at that time.  相似文献   

4.
We present XMM–Newton observations of the eclipsing polar V2301 Oph which cover nearly 2.5 binary orbital cycles and two eclipses. This polar is believed to have the lowest magnetic field strength (7 MG) of any known polar. We find evidence for structure in the X-ray eclipse profile which shows a 'standstill' feature lasting  26 ± 4  s. This allows us to place an upper limit on the mass of the white dwarf of  ∼1.2 M  . We find no evidence for quasi-periodic oscillations (QPOs) in the frequency range 0.02–10 Hz. This coupled with the absence of QPOs in RXTE data suggests that, if present, any oscillations in the shock front have a minimal effect on the resultant X-ray flux. We find no evidence for a distinct soft X-ray component in its spectrum – it therefore joins another seven systems which do not show this component. We suggest that those systems which are asynchronous, have low mass-transfer rates or have accretion occurring over a relatively large fraction of the white dwarf are more likely to show this effect. We find that the specific mass-transfer rate has to be close to 0.1 g cm−2 s−1 to predict masses which are consistent with that derived from our eclipse analysis. This may be due to the fact that the low magnetic field strength allows accretion to take place along a wide range of azimuth.  相似文献   

5.
XMM-Newton was used to observe two eclipsing, magnetic cataclysmic variables, DP Leo and WW Hor, continuously for three orbital cycles each. Both systems were in an intermediate state of accretion. For WW Hor we also obtained optical light curves with the XMM-Newton Optical Monitor and from ground-based observations. Our analysis of the X-ray and optical light curves allows us to constrain physical and geometrical parameters of the accretion regions and derive orbital parameters and eclipse ephemerides of the systems. For WW Hor we directly measure horizontal and vertical temperature variations in the accretion column. From comparisons with previous observations we find that changes in the accretion spot longitude are correlated with the accretion rate. For DP Leo the shape of the hard X-ray light curve is not as expected for optically thin emission, showing the importance of optical depth effects in the post-shock region. We find that the spin period of the white dwarf is slightly shorter than the orbital period and that the orbital period is decreasing faster than expected for energy loss by gravitational radiation alone.  相似文献   

6.
We present the results of a 22.5 ks pointed ROSAT PSPC observation of the 3.4-h period eclipsing polar MN Hya (RX J0929.1−2404). The X-ray light curve exhibits a 'double-humped' shape, with a secondary minimum occuring at φ∼ 0.45, a morphology consistent with two-pole accretion. Strong aperiodic flaring activity, with flux enhancements of ∼ 6 × the quiescent level, is also observed. A pre-eclipse 'dip' occurs in the phase interval φ= 0.87–0.95 with the X-rays becoming harder, indicative of photoelectric absorption by the pre-shock flow. There is also evidence of a secondary spectrally hard 'dip' near φ = 0.45–0.55, which might be associated with a second accretion stream flowing to the other magnetic pole.   The X-ray spectrum is best represented by a combination of a ∼50 eV blackbody and a thermal bremsstrahlung component of kT 1.6 keV, with a total absorption column of N H  = 2.9 × 1020 cm−2.   The primary maximum (φ∼ 0.65) has a slightly larger column and normalization compared to the secondary maximum. Although there are few photons, the dip spectrum is very flat in comparison to other phases, and is best represented by a single bremsstrahlung component. This is indicative of the spectral hardening seen in the light curves attributed to photoabsorption. The ratio of unabsorbed bremsstrahlung and blackbody luminosities is ∼ 0.1 for the best-fitting average spectral models. This implies a magnetic field strength  30 MG on the basis of the empirical L hard/ L soft −  B relationships, although consideration of the cyclotron flux and aspect effects could allow for an even higher field (55 MG).  相似文献   

7.
The eclipsing nova-like cataclysmic variable star V348 Pup exhibits a persistent luminosity modulation with a period 6 per cent longer than its 2.44-h orbital period ( P orb). This has been interpreted as a 'positive superhump' resulting from a slowly precessing non-axisymmetric accretion disc gravitationally interacting with the secondary. We find a clear modulation of mid-eclipse times on the superhump period, which agrees well with the predictions of a simple precessing eccentric disc model. Our modelling shows that the disc light centre is on the far side of the disc from the donor star when the superhump reaches maximum light. This phasing suggests a link between superhumps in V348 Pup and late superhumps in SU UMa systems. Modelling of the full light curve and maximum entropy eclipse mapping both show that the disc emission is concentrated closer to the white dwarf at superhump maximum than at superhump minimum. We detect additional signals consistent with the beat periods between the implied disc precession period and both and  相似文献   

8.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

9.
Intermediate polars (IPs) are a group of cataclysmic variables (CVs) which are thought to contain white dwarfs which have a magnetic field strength in the range ∼0.1–10 MG. A significant fraction of the X-ray sources detected in recent deep surveys has been postulated to consist of IPs. Until now two of the defining characteristics of IPs have been the presence of high (and complex) absorption in their X-ray spectra and the presence of a stable modulation in the X-ray light curve which is a signature of the spin period, or the beat period, of the accreting white dwarf. Three CVs, V426 Oph, EI UMa and LS Peg, have characteristics which are similar to IPs. However, there has been only tentative evidence for a coherent period in their X-ray light curve. We present the results of a search for coherent periods in XMM–Newton data of these sources using an autoregressive analysis which models the effects of red noise. We confirm the detection of a ∼760 s period in the soft X-ray light curve of EI UMa reported by Reimer et al. and agree that this represents the spin period. We also find evidence for peaks in the power spectrum of each source in the range 100–200 s which are just above the 3σ confidence level. We do not believe that they represent genuine coherent modulations. However, their X-ray spectra are very similar to those of known IPs. We believe that all three CVs are bona fide IPs. We speculate that V426 Oph and LS Peg do not show evidence for a spin period since they have closely aligned magnetic and spin axes. We discuss the implications that this has for the defining characteristics of IPs.  相似文献   

10.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

11.
We present a phase-resolved ROSAT HRI X-ray light curve of the dwarf nova OY Car in quiescence. The X-ray flux is eclipsed at the same time as the optical eclipse of the primary, and the region of X-ray emission is comparable in size to the white dwarf. We use subsequent optical observations to update the orbital ephemeris of the system.  相似文献   

12.
We present archival Rossi X-ray Timing Explorer ( RXTE ) and simultaneous Advanced Satellite for Cosmology and Astrophysics ( ASCA ) data of the eclipsing low mass X-ray binary (LMXB) X 1822−371. Our spectral analysis shows that a variety of simple models can fit the spectra relatively well. Of these models, we explore two in detail through phase-resolved fits. These two models represent the case of a very optically thick and a very optically thin corona. While systematic residuals remain at high energies, the overall spectral shape is well approximated. The same two basic models are fitted to the X-ray light curve, which shows sinusoidal modulations interpreted as absorption by an opaque disc rim of varying height. The geometry we infer from these fits is consistent with previous studies: the disc rim reaches out to the tidal truncation radius, while the radius of the corona (approximated as spherical) is very close to the circularization radius. Timing analysis of the RXTE data shows a time-lag from hard to soft consistent with the coronal size inferred from the fits. Neither the spectra nor the light curve fits allow us to rule out either model, leaving a key ingredient of the X 1822−371 puzzle unsolved. Furthermore, while previous studies were consistent with the central object being a 1.4 M neutron star, which has been adopted as the best guess scenario for this system, our light curve fits show that a white dwarf or black hole primary can work just as well. Based on previously published estimates of the orbital evolution of X 1822−371, however, we suggest that this system contains either a neutron star or a low mass (≲2.5 M) black hole and is in a transitional state of duration shortward of 107 yr.  相似文献   

13.
We present Swift observations of the black hole X-ray transient, GRO J1655−40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well suited for monitoring the spectral evolution of such an event. GRO J1655−40 was observed on 20 occasions and data were obtained by all instruments for the majority of epochs. X-ray spectroscopy revealed spectral shapes consistent with the 'canonical' low/hard, high/soft and very high states at various epochs. The soft X-ray source (0.3–10 keV) rose from quiescence and entered the low/hard state, when an iron emission line was detected. The soft X-ray source then softened and decayed, before beginning a slow rebrightening and then spending ∼3 weeks in the very high state. The hard X-rays (14–150 keV) behaved similarly but their peaks preceded those of the soft X-rays by up to a few days; in addition, the average hard X-ray flux remained approximately constant during the slow soft X-ray rebrightening, increasing suddenly as the source entered the very high state. These observations indicate (and confirm previous suggestions) that the low/hard state is key to improving our understanding of the outburst trigger and mechanism. The optical/ultraviolet light curve behaved very differently from that of the X-rays; this might suggest that the soft X-ray light curve is actually a composite of the two known spectral components, one gradually increasing with the optical/ultraviolet emission (accretion disc) and the other following the behaviour of the hard X-rays (jet and/or corona).  相似文献   

14.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

15.
We have investigated the long-term flux variation in Cen X-3 using orbital modulation and pulsed fraction in different flux states using observations made with the All-Sky Monitor and the Proportional Counter Array on board the Rossi X-ray Timing Explorer . In the high state, the eclipse ingress and egress are found to be sharp whereas in the intermediate state the transitions are more gradual. In the low state, instead of eclipse ingress and egress, the light curve shows a smooth flux variation with orbital phase. The orbital modulation of the X-ray light curve in the low state shows that the X-ray emission observed in this state is from an extended object. The flux-dependent orbital modulations indicate that the different flux states of Cen X-3 are primarily due to varying degree of obscuration. Measurement of the pulsed fraction in different flux states is consistent with the X-ray emission of Cen X-3 having one highly varying component with a constant pulsed fraction and an unpulsed component and in the low state, the unpulsed component becomes dominant. The observed X-ray emission in the low state is likely to be due to scattering of X-rays from the stellar wind of the companion star. Though we cannot ascertain the origin and nature of the obscuring material that causes the aperiodic long-term flux variation, we point out that a precessing accretion disc driven by radiative forces is a distinct possibility.  相似文献   

16.
Comparison of five X-ray observations of the intermediate polar FO Aqr reveals that the morphology of the X-ray light curve changes considerably with time. In particular, power spectra of the 1988 Ginga   and 1993 ASCA   data reveal strong sideband and orbital variations, whereas the 1990 Ginga   observation does not. This suggests that the amount of stream-fed accretion varies with epoch, and the system was accreting predominantly from a disc in 1990.   In contrast to other intermediate polars, the X-ray spin-pulse profiles show significant variations between observations, ranging from relatively sinusoidal to sawtooth-shaped at medium energies. During the 1988 and 1990 observations a notch is visible at spin phase zero, due to the presence of an interpulse at phase 0.85, which is absent during the other observations. At lower energies a narrow pulse of emission is seen at spin phase 0.2.   We interpret the pulse profile from the 1990 Ginga   observation using a model for accretion from a disc on to a dipolar magnetic field, the axis of which is offset from the white dwarf centre by ∼ 0.15 white dwarf radii. In order to account for the later occurrence of the hardness-ratio maximum in 1988 and 1993, we suggest that the accretion-rate profile changes so that accretion is favoured along the field lines which trail the magnetic pole. This also accounts for the disappearance of the interpulse and notch in 1993.  相似文献   

17.
We report on the results of the first simultaneous X-ray ( RXTE ) and optical [South African Astronomical Observatory (SAAO)] observations of the luminous low-mass X-ray binary (LMXB) GX 9+9 in 1999 August. The high-speed optical photometry revealed an orbital period of 4.1958 h and confirmed previous observations, but with greater precision. No X-ray modulation was found at the orbital period. On shorter time-scales, a possible 1.4-h variability was found in the optical light curves which might be related to the MHz quasi-periodic oscillations seen in other LMXBs. We do not find any significant X-ray/optical correlation in the light curves. In X-rays, the colour–colour and hardness-intensity diagrams indicate that the source shows characteristics of an atoll source in the upper banana state, with a correlation between intensity and spectral hardness. Time-resolved X-ray spectroscopy suggests that two-component spectral models give a reasonable fit to the X-ray emission. Such models consist of a blackbody component which can be interpreted as the emission from an optically thick accretion disc or an optically thick boundary layer, and a hard Comptonized component for an extended corona.  相似文献   

18.
We present a ∼5-yr optical light curve of the recurrent Be/X-ray transient A0538–66 obtained as a by-product of the MACHO Project. These data reveal both a long-term modulation at P =420.8±0.8 d and a short-term modulation at 16.6510±0.0022 d which, within errors, confirms the previously found orbital period. Furthermore, the orbital activity is only seen at certain phases of the 421-d cycle, suggesting that the long-term modulation is related to variations in the Be star envelope.  相似文献   

19.
Using the Rossi X-ray Timing Explorer and the Nordic Optical Telescope, we have obtained the highest ever quality X-ray/white-light high-speed photometry of XB 1916–053. We refine the X-ray period ( P X) to 3000.6±0.2 s via a restricted cycle counting approach. Using our complete optical light curve, we have extended the optical period ( P opt) ephemeris by another 4 yr, providing further evidence for its stability, although a slightly longer period of 3027.555±0.002 s now provides a marginally better fit. Moreover, modulations at both P X and P opt are present in the optical data, with the former dominating the nightly light curves (i.e. a few cycles of data). We have also attempted to determine the 'beat' period, as seen in the repeating evolution of the X-ray dip structure, and the variation in primary dip phase. We find that a quasi-period of 4.74±0.05 d provides the best fit to the data, even then requiring phase shifts between cycles, with the expected 3.90-d 'beat' of P X and P opt appearing to be less likely. Finally, considering the nature of each of these temporal phenomena, we outline possible models, which could explain all of the observed behaviour of this enigmatic source, focusing on which of P X or P opt is the binary period.  相似文献   

20.
An orbital solution for the MACHO*05:34:41.3–69:31:39 eclipsing binary system is presented, based on the published light curve and spectral data obtained with the 2.15-m telescope at CASLEO. Based on these spectroscopic observations, the binary components of this system were classified as O3 If* and O6:V respectively. The radial velocity data along with the published light curve were analysed with the Wilson–Devinney code to derive the following masses and radii for the components of this system:             and     The solution shows that the system is in overcontact, as one would expect from the derived masses and the very short orbital period (∼1.4 d).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号