首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The spectral-frequency method (Busarev et al., 2007b) allowed us to obtain data on 16 sizes of hydrosilicate spots on the surface of the asteroid 4 Vesta. Large sizes (800 and 750 km) show clusters of small hydrosilicate spots near a well-known crater. Small spots of 50–13 km cover more than 50% of the surface. The predominant number of small-sized spots suggests their recent origin. Our data confirm the presence of water combinations on the surface of 4 Vesta and allow us to draw a conclusion on their recent appearance in collisions of this asteroid with primitive bodies arriving from the zone of Jupiter.  相似文献   

2.
A new spectral-frequency method (SFM) for the study of solid body surfaces is briefly described. This method allows estimation of the sizes of various spots. Estimates for the sizes of spots on asteroid surfaces made by the SFM and other methods are compared and discussed. The sizes of spots on the surface of asteroid 1620 Geographos determined by the SFM are well consistent with those of the craters obtained from radar data. The sizes of hydrosilicate spots on the surface of asteroid 21 Lutetia found by the SFM agree with those of the craters determined by the Rosetta spacecraft. The size of a blue spot on the surface of asteroid 4 Vesta found by the SFM is consistent with the size of the well-known crater on the south pole of the asteroid. It is inferred that the SFM is a promising method for the estimation of the sizes of spots on asteroid surfaces.  相似文献   

3.
The sizes of color patches on the surface of the asteroid 4 Vesta were estimated with the spectral-frequency method. We used the digital records of the asteroid spectra obtained on February 2, 3, 4, and 7, 2002, with the TV system and the slitless afocal spectrograph of the MTM-500 telescope at the Research Institute of the Crimean Astrophysical Observatory. The spectral resolution caused by the image quantity was about 40 Å and the exposure duration was 30 s. The energy calibration was performed both with the artificial light-emitting diode standard and three standard stars. The synthetic color indices B-V and V-R were calculated from the asteroid spectra taken out of the atmosphere. From these data, the changes with an asteroid rotation phase were eliminated. After that, the periods that were significantly smaller than the asteroid rotation period were searched for, and each time the data were whitened for the obtained period. Assuming that the patch sizes are determined by the half-obtained period and that the patches are located in the equatorial region of the asteroid, we estimated the sizes of 20 and 19 patches in the long-and short-wavelength ranges, respectively. The smallest found patch was about 9 km across. The statistical estimates of the reddish patches and the comparison with the statistics of old craters allowed us to suggest that the reddish patches on the asteroid Vesta surface are old formations.  相似文献   

4.
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High‐resolution (15–20 m pixel?1) Framing Camera images are used to assess the presence of morphologic indicators of a shallow regolith, including the presence of blocks in crater ejecta, spur‐and‐gully–type features in crater walls, and the retention of small (<300 m) impact craters. Such features reveal that the broad, regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper ~1 km of the surface. Regions of thin regolith are found within the Rheasilvia basin and at equatorial latitudes from ~0–90°E and ~260–360°E. Craters in these areas that appear to excavate material from beneath the regolith have more diogenitic (Rheasilvia, 0–90°E) and cumulate eucrite (260–360°E) compositions. A region of especially thick regolith, where depths generally exceed 1 km, is found from ~100–240°E and corresponds to heavily cratered, low‐albedo surface with a basaltic eucrite composition enriched in carbonaceous chondrite material. The presence of a thick regolith in this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta toward more howarditic compositions, consistent with regolith mixing being the dominant form of “weathering” on Vesta.  相似文献   

5.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

6.
T. Le Bertre  B. Zellner 《Icarus》1980,43(2):172-180
Polarimetric, photometric, and reflectance spectroscopic properties of asteroid 44 Vesta are simulated in the laboratory by a preparation of eucrite Bereba consisting oof a broad mixture of particle sizes (mainly greater than 50-μm) mixed and partially coated with particles of size 10 μm and less. Coarse grains are necessary for producing the same albedo and a very fine dust coating is necessary for producing the same polarization inversion angle as observed for Vesta. There are less small grains and fine dust in this sample than in lunar soils. Photometrically, if coating a sphere, this sample shows a constant brightness on the sunward half of the observed hemisphere, the brightness being given on the other half by the Minnaert reciprocity principle. With such a photometric behavior, the global geometric albedo and the sub-Earth point geometric albedo differ by no more than 5%. The microscopic phase coefficient β is 0.021 magnitude per degree for the sample; the larger value, β = 0.025, observed telescopically for Vesta indicates that large-scale roughness is present on this asteroid.  相似文献   

7.
《Icarus》1987,70(2):246-256
Photoelectric lightcurves of the asteroid 1862 Apollo were obtained in November–December 1980 and in April–May 1982. The period of rotation is unambiguously determined to be 3.0655 ± 0.0008 hr. The 1980 observations span a range of solar phase angle from 30° to 90°, and the 1982 observations, 0.°2 to 90°. The Lumme-Bowell-Harris phase relation can be fit to the absolute magnitudes at maximum light with an RMS scatter of 0.06 magnitude over the entire range of phase angle. The constants of the solution are absolute V magnitude at zero phase angle and at maximum light, 16.23 ± 0.02; slope parameter, 0.23 ± 0.01. These constant corresponds to values in the linear phase coefficient system of V(1, 0) = 16.50 ± 0.02 and a phase coefficient of βv = 0.0305 ± 0.0012 mag/degree in the phase range 10°–20°. The slope of the phase curve is typical for a moderate albedo asteroid. The absolute magnitudes observed in 1980 and 1982 fall along a common phase curve. That is, Apollo was not intrinsically brighter at one apparition than the other. This is not surprising, since the two apparitions were almost exactly opposite one another in the sky. A pole position was calculated from the observed deviation of the lightcurve from constant periodicity (synodic-sidereal difference) during both apparitions. The computed 1950 ecliptic coordinates of the pole are: longitude = 56°, latitude = −26°. This is the “north” pole with respect to right-handed (counter-clockwise) rotation. The formal uncertainty of the solution for the pole position is less than 10°, but realistically may be several times that, or even completely wrong. The sidereal period of rotation asscociated with this pole solution is 3.065436 ± 0.000012 hr.  相似文献   

8.
Abstract— A large body of evidence, including the presence of a dynamical family associated with 4 Vesta, suggests that this asteroid might be the ultimate source of both the V-type near-Earth asteroids (NEAs) and howardite, eucrite and diogenite (HED) meteorites. Dynamical routes from Vesta to the inner regions of the solar system are provided by both the 3:1 mean-motion resonance with Jupiter and the V6, secular resonance. For this reason, numerical integrations of the orbits of fictitious Vesta fragments injected in both of these resonances have been performed. At the same time, the orbital evolution of the known V-type NEAs has been investigated. The results indicate that the dynamical half lifetimes of Vesta fragments injected in both the 3:1 and the V6, resonances are rather short ('2 Ma). The present location of the seven known V-type NEAs is better explained by orbital evolutions starting from the v6 secular resonance. The most important result of the present investigation, however, is that we now face what we call the “Vesta paradox.” Roughly speaking, the paradox consists of the fact that the present V-type NEAs appear to be too dynamically young to have originated in the event that produced the family, but they are too big to be plausible second-generation fragments from the family members. The cosmic-ray exposure (CRE) age distribution of HED meteorites also raises a puzzle, since we would expect an overabundance of meteorites with short CRE ages. We propose different scenarios to explain these paradoxes.  相似文献   

9.
NASA’s Dawn spacecraft observations of Asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 μm filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howardite Mt. Pratt (PRA) 04401. Laboratory mixtures of Murchison CM2 carbonaceous chondrite and basaltic eucrite Millbillillie also show band depth and albedo affinity to DM. Modeling of carbonaceous chondrite abundance in DM (1–6 vol.%) is consistent with howardite meteorites. We find no evidence for large-scale volcanism (exposed dikes/pyroclastic falls) as the source of DM. Our modeling efforts using impact crater scaling laws and numerical models of ejecta reaccretion suggest the delivery and emplacement of this DM on Vesta during the formation of the ~400 km Veneneia basin by a low-velocity (<2 km/s) carbonaceous impactor. This discovery is important because it strengthens the long-held idea that primitive bodies are the source of carbon and probably volatiles in the early Solar System.  相似文献   

10.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

11.
Abstract– A calibrated lightcurve is presented of the near‐Earth asteroid 2008 TC3, obtained before it impacted Earth on October 7, 2008. The asteroid was observed in unfiltered images from the end of astronomical twilight until the object entered Earth’s shadow about 2 h later. The observations covered a wide range of phase angles from 14.79° to 2.93°, during which the asteroid ranged from 82,000 km to 29,000 km distance from the observer. A method is presented for obtaining photometrically filtered brightness values for the asteroid using unfiltered imaging techniques. Over 1,700 images of the asteroid produce a lightcurve with a peak‐to‐peak variation in V of 0.76 magnitude. Analysis of the lightcurve yields values for H = 30.86 ± 0.01 and G = 0.33 ± 0.03. Combined with other constraints on the kinetic energy and diameter of the asteroid, which suggest a low 1.8 g cm?3 density and albedo 0.05 ± 0.01, the value of H implies an asteroid of about 4.1 m in diameter, 28 m3 in volume, and 51,000 kg in mass. The determined value of G is out of range for normal, larger asteroids of albedo 0.05–0.15.  相似文献   

12.
In 1971 asteroid Vesta was observed in a region of the sky in which it had never been observed before. Its photometric lightcurve had two distinct maxima. Those observations have been the only strong evidence to support a rotation period of about 10 hr 41 min. Lightcurves made in 1982, when Vesta was at the same aspect as 1971, do not show two different maxima. It is concluded that there was a systematic error in the 1971 observations. At this time a definitive statement cannot be made about the true period of Vesta, although the 5 hr 20 min period does appear more plausible. Radar echoes in 1988 and 1992 should resolve the problem. The shorter rotation period was assumed and the photometric astrometry method applied. The sidereal period is 5 hr 20 min 31.68 sec 0.2225889 ± 0.0000002 days, the rotation is prograde, and the coordinates of the north pole are 103° longitude and +43° latitude with an uncertainty of abour 6°.  相似文献   

13.
The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode led to the differentiation of Vesta into crust, mantle, and core. This melting episode is attributed to the decay of 26Al, which has a half‐life of 7.17 × 105 yr. This heating produced a global magma ocean. Surface cooling of this magma ocean will produce a solid crust. In this paper, we propose a convective heat‐transfer mechanism that effectively cools the asteroid when the degree of melting reaches about 50%. We propose that a cool solid surface crust, which is gravitationally unstable, will founder into the solid–liquid mix beneath and will very effectively transfer heat that prevents further melting of the interior. In this paper, we quantify this process. If Vesta had a very early formation, melting would commence at an age of about 1,30,000 yr, and solidification would occur at an age of about 10 Myr. If Vesta formed with a time delay greater than about 2 Myr, no melting would have occurred. An important result of our model is that the early melting episode is restricted to the first 10 Myr. This result is in good agreement with the radiometric ages of the HED meteorites.  相似文献   

14.
The Dawn spacecraft of the NASA space mission to asteroids 1 Ceres and 4 Vesta was launched in September 2007. The choice of these two asteroids is deeply grounded: they are the largest and most massive objects of the main belt that are completely different in material composition, evolution history, and internal structure. Recently, the results of observations and numerical modeling have shown their amazing uniqueness: they both have experienced the complex process of thermal evolution and differentiation of their internal mineral resources, but have a completely different internal structure. Being the largest bodies, have they managed to resist the process of collisional evolution in the asteroid belt and have survived in their “primitive form.” Because of this, their study is very important from the point of view of cosmogonic problems regarding the asteroid belt and the Solar System as a whole. The present paper shortly reviews the recent progress in the study of Ceres and Vesta achieved due to observations performed on the Earth (including the polarimetric observations made by the authors) and from the Hubble Space Telescope (HST) before the long-term orbital investigations performed by the Dawn spacecraft.  相似文献   

15.
This paper presents and discusses selected reflectance spectra of 40 Main Belt asteroids. The spectra have been obtained by the author in the Crimean Laboratory of the Sternberg Astronomical Institute (2003–2009). The aim is to search for new spectral features that characterize the composition of the asteroids’ material. The results are compared with earlier findings to reveal substantial irregularities in the distribution of the chemical-mineralogical compositions of the surface material of a number of minor planets (10 Hygiea, 13 Egeria, 14 Irene, 21 Lutetia, 45 Eugenia, 51 Nemausa, 55 Pandora, 64 Angelina, 69 Hesperia, 80 Sappho, 83 Beatrix, 92 Undina, 129 Antigone, 135 Hertha, and 785 Zwetana), which are manifest at different rotation phases. The vast majority of the analyzed high-temperature asteroids demonstrate subtle spectral features of an atypical hydrated and/or carbonaceous chondrite material (in the form of impurities or separate units), which are likely associated with the peculiarities of the formation of these bodies and the subsequent dynamic and impact processes, which lead, inter alia, to the delivery of atypical materials. Studies of 4 Vesta aboard NASA’s Dawn spacecraft have found that asteroids of similar types can form their own phyllosilicate generations provided that their surface material contains buried icy or hydrated fragments of impacting bodies. The first evidence has been obtained of a spectral phase effect (SPE) at small phase angles (≤4°) for 10 Hygiea, 21 Lutetia, and, possibly, 4 Vesta. The SPE manifests itself in an increasing spectral coefficient of brightness in the visible range with decreasing wavelength. This effect is present in the reflectance spectrum of CM2 carbonaceous material at a phase angle of 10° and absent at larger angles (Cloutis et al., 2011a). The shape of Hygeia’s reflectance spectra at low phase angles appears to be controlled by the SPE during the most part of its rotation period, which may indicate a predominantly carbonaceous chondrite composition on a part of the asteroid’s surface. For Vesta, the SPE may manifest itself in the flat or slightly concave shape of the asteorid’s reflectance spectra at some of the rotation phases, which is likely caused by the increased number of dark spots on corresponding parts of its surface.  相似文献   

16.
Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta (and others with sizes down to 50 km diameter and distance out to 2.8 AU thus approximately reproducing the observed distributions of S objects) with no melting for Pallas and Ceres. Fairly high temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum (somewhat similar to but distinct from C type). A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.  相似文献   

17.
《Planetary and Space Science》1999,47(3-4):327-330
The asteroid 85 Io has been observed using CCD and photoelectric photometry on 18 nights during its 1995–96 and 1997 apparitions. We present the observed lightcurves, determined colour indices and modelling of the asteroid spin vector and shape. The colour indices (U-B = 0.35±0.02, B-V = 0.66±0.02, V-R = 0.34±0.02, R-I = 0.36±0.02) are as expected for a C-type asteroid. The allowed spin vector solutions have the pole co-ordinates λ0 = 285±4°, β0 = −52±9° or λ0 = 108±10°, β0 = −46±10° and λ0 = 290±10°, β0 = −16±10° with a retrograde sense of rotation and a sidereal period Psid = 0d.286463±0d.000001. During the 1995–96 apparition the International Occultation Time Association (IOTA) observed an occultation event by 85 Io. The observations and modelling presented here were analysed together with the occultation data to develop improved constraints on the size of the asteroid. The derived value of 164 km is about 5% larger than the IRAS diameter. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

18.
The astrometric and photometric observations of the potentially hazardous 2009 WZ104 asteroid were carried out at the MTM-500M and ZA-320M automatic telescopes of the Pulkovo Observatory in December 2009. A total of 686 observations were performed in the integral band and 146 observations with B, V, R, and I filters on an arc of the orbit of 17°; these accounted for about 77% of all worldwide observations (). On the basis of the obtained data, the orbit was improved and an estimation of the physical parameters of the asteroid was made. Estimates of the absolute stellar magnitude of the asteroid, H = (20.52 ± 0.04) m , as well as its size and mass, were obtained. The taxonomic class of the 2009 WZ104 asteroid (R or Q) was determined. A frequency analysis of the series of observations was carried out; periodicities in the asteroid’s light variation were revealed using this method.  相似文献   

19.
A worldwide photometric investigation of the asteroid 324 Bamberga was conducted during the period September–November 1978. The full-cycle lightcurve shows two maxima and two minima with a maximum amplitude of 0.075 mag; the rotation period was found to be Psyn = 29.h42 ± 0.h01. A linear least-squares solution of the phase relation gives βy = (0.334 ± 0.001) mag/degree and V0 (1, 0) = (7.17 ± 0.01) mag. The color indices measured are B-V = 0.69, U-B=0.36, in agreement with the C taxonomic type given for 324 Bamberga. The very long period indicates 324 Bamberga is an unusual object among asteroids with diameters greater than 200 km.  相似文献   

20.
Abstract— Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (apparent diameter Da = 3.8 km), the Ries crater (Da = 24 km) in southern Germany, and the moldavite (tektite) strewn field in Bohemia and Moravia (Czech Republic), Lusatia (East Germany), and Lower Austria. The moldavite strewn field extends from ~200 to 450 km from the center of the Ries to the east‐northeast forming a fan with an angle of ~57°. An oblique impact of a binary asteroid from a west‐southwest direction appears to explain the locations of the craters and the formation and distribution of the moldavites. The impactor must have been a binary asteroid with two widely separated components (some 1.5 and 0.15 km in diameter, respectively). We carried out a series of three‐dimensional hydrocode simulations of a Ries‐type impact. The results confirm previous results suggesting that impacts around 30–50° (from the horizontal) are the most favorable angles for near‐surface melting, and, consequently for the formation of tektites. Finally, modeling of the motion of impact‐produced tektite particles through the atmosphere produces, in the downrange direction, a narrow‐angle distribution of the moldavites tektites in a fan like field with an angle of ~75°. An additional result of modeling the motion of melt inside and outside the crater is the preferred flow of melt from the main melt zone of the crystalline basement downrange towards the east‐northeast rim. This explains perfectly the occurrence of coherent impact melt bodies (some tens of meters in size) in a restricted zone of the downrange rim of the Ries crater. The origin of these melt bodies, which represent chemically a mixture of crystalline basement rocks similar to the main melt mass contained (as melt particles <0.5 m in size) in the suevite, do not occur at any other portion of the Ries crater rim and remained enigmatic until now. Although the calculated distribution of moldavites still deviates to some degree from the known distribution, our results represent an important step toward a better understanding of the origin and distribution of the high‐velocity surface melts and the low‐velocity, deep‐seated melt resulting from an oblique impact on a stratified target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号