首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The source parameters of the M W = 7.6 Olyutorskii earthquake were estimated using the moments of the slip rate function with degrees 1 and 2. The moments were estimated from broadband P-wave records at 52 stations of the worldwide network. The first step was to find a function S(t) for each station; this function is an apparent source time function, i.e., the P-wave slip as radiated by the source toward a station under consideration. The method of empirical Green’s functions was used to estimate S(t). The next step was to calculate the moments of S(t) of degrees 1 and 2 over time and to set up relevant equations to be solved by least squares for the unknown source moments. The horizontal linear source was used as a nonparametric model for calculating the source moments. Haskell’s parametric model was used for further interpretation of the source moments. The resulting estimates are as follows: the source centroid was 13–25 km southwest of the epicenter, the source was 105–120 km long, the source strike was 222°–228°, the rupture velocity was 2.7–3.0 km/s, and the total radiation duration was 24–27 s. These estimates indicate a bilateral rupture dominated by a southwestward sense of rupture propagation. The source characteristics are consistent with the aftershock area geometry and with the focal mechanism, as well as with surface breakage as observed by geologists in the field.  相似文献   

2.
The seismic waves excited by the M w 7.6 Olyutorskii earthquake that occurred on April 20, 2006 in the Koryak Upland gave rise to water-level changes in five wells situated in continental areas of Kamchatka at hypocentral distances of 750–1150 km. We describe the effects due to seismic waves, as well as the water-level anomalies for February–April 2006 before the earthquake. We used an original technique for the processing of water-level records based on the study of barometric and tidal water-level responses in order to estimate the volume strain in water-saturated rocks during synchronous level variations at two wells. We discuss possible mechanisms for producing anomalous water-level changes due to elastic deformation of monitored groundwater reservoirs and to crack dilatancy in the water-saturated rocks.  相似文献   

3.
The area of the Koryak Autonomous Okrug was hit by an M S 7.7 earthquake on April 20(21), 2006, the largest to have occurred in the area during the period of historical and instrumental observation. This event is now referred to as the Olyutorskii earthquake. We present results from a study of the associated macroseismic effects as observed in the villages of Korf and Tilichiki. The intensity was IX at Korf and VIII at Tilichiki on the MSK-64 scale.  相似文献   

4.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

5.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

6.
The 2014 Kefalonia earthquake sequence started on 26 January with the first main shock (MW6.1) and aftershock activity extending over 35 km, much longer than expected from the causative fault segment. The second main shock (MW6.0) occurred on 3 February on an adjacent fault segment, where the aftershock distribution was remarkably sparse, evidently encouraged by stress transfer of the first main shock. The aftershocks from the regional catalog were relocated using a 7-layer velocity model and station residuals, and their distribution evidenced two adjacent fault segments striking almost N-S and dipping to the east, in full agreement with the centroid moment tensor solutions, constituting segments of the Kefalonia Transform Fault (KTF). The KTF is bounded to the north by oblique parallel smaller fault segments, linking KTF with its northward continuation, the Lefkada Fault.  相似文献   

7.
A new modified magnitude scale M S (20R) is elaborated. It permits us to extend the teleseismic magnitude scale M S (20) to the regional epicenter distances. The data set used in this study contains digital records at 12 seismic stations of 392 earthquakes that occured in the northwest Pacific Ocean in the period of 1993–2008. The new scale is based on amplitudes of surface waves of a narrow range of the periods (16–25 s) close to the period of 20 s, for distances of 80–3000 km. The digital Butterworth filter is used for processing. On the basis of the found regional features concerning distance dependence for seismic wave attenuation, all the stations of the region have been subdivided into two groups, namely, “continental” and “island-arc.” For each group of stations, its own calibration function is proposed. Individual station corrections are used to compensate for the local features.  相似文献   

8.
This paper reviews the precursory phenomena of the 2011 M W9 Tohoku earthquake in Japan that emerge solely when we analyze the seismicity data in a new time domain termed natural time. If we do not consider this analysis, important precursory changes cannot be identified and hence are missed. Natural time analysis has the privilege that enables the introduction of an order parameter of seismicity. In this frame, we find that the fluctuations of this parameter exhibit an unprecedented characteristic change, i.e., an evident minimum, approximately two months before Tohoku earthquake, which strikingly is almost simultaneous with unique anomalous geomagnetic field variations recorded mainly on the z component. This is consistent with our finding that such a characteristic change in seismicity appears when a seismic electric signal (SES) activity of the VAN method (from the initials of Varotsos, Alexopoulos, Nomicos) initiates, and provides a direct confirmation of the physical interconnection between SES and seismicity.  相似文献   

9.
The complex seismotectonic studies of the pleistoseist area of the Ilin-Tas earthquake (Ms = 6.9), one of the strongest seismic events ever recorded by the regional seismic network in northeastern Russia, are carried out. The structural tectonic position, morphotectonic features of present-day topography, active faults, and types of Cenozoic deformations of the epicentral zone are analyzed. The data of the instrumental observations are summarized, and the manifestations of the strong seismic events in the Yana–Indigirka segment of the Cherskii seismotectonic zone are considered. The explanation is suggested for the dynamical tectonic setting responsible for the Andrei-Tas seismic maximum. This setting is created by the influence of the Kolyma–Omolon indenter, which intrudes into the Cherskii seismotectonic zone from the region of the North American lithospheric plate and forms the main seismogenic structures of the Yana–Indigirka segment in the frontal zone (the Ilin-Tas anticlinorium). The highest seismic potential is noted in the Andrei- Tas block—the focus of the main tectonic impacts from the Kolyma–Omolon superterrane. The general trend of this block coincides with the orientation of the major axis of isoseismal ellipses (azimuth 50°–85°), which were determined from the observations of macroseismic effects on the ground after the Uyandina (Ms = 5.6), Andrei-Tas (Ms = 6.1), and Ilin-Tas (Ms = 6.9) earthquakes.  相似文献   

10.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

11.
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the ‘strong column, weak beam’ design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.  相似文献   

12.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

13.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

14.
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earthquake (M w 7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transtensional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the M w =6.8, M w =6.2 and M w ⩽=7.8 events, respectively. The M w =7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earthquake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks depends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface ruptures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Bayan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction. Supported by the National Natural Science Foundation of China (Grant No. 40474037) and the National Basic Research Program of China (Grant No. 2004CB418401)  相似文献   

15.
We try to give a quantitative and global discrimination function by studying m b/M S data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results show that this criterion works well and has a global feature, which can be used as first-level filtering criterions in event identification. The quantitative and linear discrimination function makes it possible to identify events automatically and achieve the goal to react the events quickly and effectively.  相似文献   

16.
In this paper, observation data in 25 GPS reference stations of China have been analyzed by calculating GPS position coordinate time-series with GIPSY. Result shows there is an obvious trend variation in such time-series. The trend variations of time series along the longitude and latitude coordinate reflect the motion of each position in the global-plate, in which the trend variation in the vertical direction reveals some large-scale construction information or reflects the local movement around the positions. The analysis also shows that such time-series have a variation cycle of nearly 1.02 a, but the reason still remains to be further studied. At the end of this paper, response of the time-series of M S=8.1 Kunlunshan earthquake was analyzed, and the seismogenic process of M S=8.1 Kunlunshan earthquake, according to the time proceeding and the feature of anomaly, was divided into 3 phases—changes in blocks with forces, strain accumulation, quick accumulation and slow release of energy. At the initial stage of seismogenic process of M S=8.1 earthquake and at the imminent earthquake, coseismic process as well as during the post earthquake recovery, anomaly in vertical direction is always in a majority. The anomalous movement in vertical direction at the initial stage resulted in a blocking between faults, while at the middle stage of seismogenic process, the differential movement between blocks are in a majority, which is the major reason causing energy accumulating at the blocking stage of faults.  相似文献   

17.
The relation between the gravity variation features and M S=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000. The results show that: 1) M S=8.1 earthquake in Kulun mountain pass western occurred in the gravity variation high gradient near gravity’s high negative variation; 2) The main tectonic deformation and energy accumulation before M S=8.1 earthquake are distributed at south side of the epicenter; 3) The range of gravity’s high negative variation at east of the M S=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation; 4) Gravity variation distribution in high negative value region is just consistent with the second shear strain’s high value region of strain field obtained from GPS observation.  相似文献   

18.
During the May 21, 2003 M w 6.8 Boumerdes earthquake, in the “Cité des 102 Logements” built on a hilltop, in Corso, heavy damages were observed: near the crest, a four-story RC building collapsed while others experienced severe structural damage and far from the crest, slight damage was observed. In the present paper, we perform a 2D slope topography seismic analysis and investigate its effects on the response at the plateau as well as the correlation with the observed damage distribution. A site-specific seismic scenario is used involving seismological, geological, and geotechnical data. 2D finite element numerical seismic study of the idealized Corso site subjected to vertical SV wave propagation is carried out by the universal code FLUSH. The results highlighted the main factors that explain the causes of block collapse, located 8-26 m far from the crest. These are as follows: (i) a significant spatial variation of ground response along the plateau due to the topographic effect, (ii) this spatial variation presents high loss of coherence, (iii) the seismic ground responses (PGA and response spectra) reach their maxima, and (iv) the fundamental frequency of the collapsed blocks coincides with the frequency content of the topographic component. For distances far from the crest where slight damages were observed, the topographic contribution is found negligible. On the basis of these results, it is important to take into account the topographic effect and the induced spatial variability in the seismic design of structures sited near the crest of slope.  相似文献   

19.
In this study, the 11 August 2012 M w 6.4 Ahar earthquake is investigated using the ground motion simulation based on the stochastic finite-fault model. The earthquake occurred in northwestern Iran and causing extensive damage in the city of Ahar and surrounding areas. A network consisting of 58 acceleration stations recorded the earthquake within 8–217 km of the epicenter. Strong ground motion records from six significant well-recorded stations close to the epicenter have been simulated. These stations are installed in areas which experienced significant structural damage and humanity loss during the earthquake. The simulation is carried out using the dynamic corner frequency model of rupture propagation by extended fault simulation program (EXSIM). For this purpose, the propagation features of shear-wave including \( {Q}_s \) value, kappa value \( {k}_0 \), and soil amplification coefficients at each site are required. The kappa values are obtained from the slope of smoothed amplitude of Fourier spectra of acceleration at higher frequencies. The determined kappa values for vertical and horizontal components are 0.02 and 0.05 s, respectively. Furthermore, an anelastic attenuation parameter is derived from energy decay of a seismic wave by using continuous wavelet transform (CWT) for each station. The average frequency-dependent relation estimated for the region is \( Q=\left(122\pm 38\right){f}^{\left(1.40\pm 0.16\right)}. \) Moreover, the horizontal to vertical spectral ratio \( H/V \) is applied to estimate the site effects at stations. Spectral analysis of the data indicates that the best match between the observed and simulated spectra occurs for an average stress drop of 70 bars. Finally, the simulated and observed results are compared with pseudo acceleration spectra and peak ground motions. The comparison of time series spectra shows good agreement between the observed and the simulated waveforms at frequencies of engineering interest.  相似文献   

20.
The paper considers the Argun earthquake of July 22, 2011 (M w = 4.5), which occurred in the Argun River valley in a low-seismicity territory in China. The focal parameters of the earthquake (depth of the hypocenter, moment magnitude, scalar seismic moment, and focal mechanism) were determined by calculating the seismic moment tensor from the amplitude spectra of surface waves and the data on the signs of the first arrivals of body waves at regional stations. The solution of the focal mechanism makes it possible to assume a relationship between the earthquake focus and a fault with a northeastern strike bordering the southeastern side of the Argun Basin (in Chinese territory). The Argun earthquake was felt in Russia with an intensity of II–III to V at the epicentral distances up to 255 km. The intensity of shaking did not exceed values suggested by new GSZ-2012 and GSZ-2014 seismic zoning maps of Russian territory. Nevertheless, the question on the possible occurrence of stronger earthquakes in the studied region remains open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号