首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the northeastern Mediterranean Sea, Pliocene to Quaternary depocentres have formed in extensional basins bounded by splays of the East Anatolian Transform Fault. This tectonic regime is superimposed on a Miocene and older back-arc environment, that experienced late Miocene compression along the Misis-Kyrenia thrust, which now lies in the middle of the extensional zone. The thrust zone is now represented by a narrow horst that appears to be bounded by strike-slip faults. Pliocene-Quaternary extension took place on listric fault fans that are orthogonal to the bounding transform splays and sole at a Messinian evaporite horizon, and on some deeper-soling listric faults parallel to and near the bounding faults. The rapid extension has resulted in progressive landward migration of paleoshorelines and low depositional gradients. Glacio-eustatic fluctuations in shoreline positions strongly influenced sediment distribution. Most sediment dispersion was from deltaic plumes, with turbidites of minor significance. Depocentres landward of the maximum seaward extent of paleoshorelines were formed almost entirely by tectonic subsidence. Minor deep-water depocentres, controlled by halokinesis, accumulated mud turbidites during extreme low-stands of sea-level.  相似文献   

2.
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.  相似文献   

3.
Based on an unusual data set comprises bathymetric data, backscatter imagery, seismic-reflection and Chirp profiles, and sediment cores, the Late Quaternary lobe at the mouth of the youngest turbidite channel off the western Nile deep-sea fan was investigated. The large-scale construction of the lobe through time and space is mainly controlled by 1) a pre-existing topography inherited from the downslope movement of Messinian evaporites, and 2) the type and nature of gravity flows delivered to the basin floor. The margins of the lobe are defined by high-backscatter acoustic facies that contrasts strongly with the low-backscatter facies from the surrounding abyssal-plain deposits. Within the lobe, low-backscatter facies characterise the main channel-levee systems and lobate bodies immediately beyond the end of the channels. Cores reveal that the high-backscatter facies corresponds to a series of extensive but thin debris-flow deposits with a fingered margin. These debrites comprise a muddy-sand matrix and dispersed clasts with diameter of 5 to 10 cm. The lower backscatter facies at channel mouths corresponds to alternations of thin sandy turbidites and muddy hemipelagites. Extensive thin debris flows therefore traversed surprisingly low gradients to reach the distal fringes of the lobe complex but are never found in the lobate bodies just beyond the channel mouths. Although the Nile deep-sea fan is considered as a silt/mud-rich accumulation, sand-prone deposits exist within the lobe. This sand/mud segregation results either from the presence of channelized features in the lobe and/or from the hydrodynamic process of particle transport by debris flows and turbulent flows.  相似文献   

4.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

5.
The Pyreneo-Languedocian submarine sediment body, located in the western sector of the Gulf of Lions, is an example of a fan-like depositional system essentially controlled by salt tectonics. The area was subjected to a combined effect of overburden subsidence into the evacuated salt layer and a significant distal salt thickening, due to preferential basinward salt migration. This mode of salt migration impacted the Quaternary sea-bottom morphology by creating a large midslope topographic low, providing space accommodation for the Pyreneo-Languedocian fan. At gulf scale, the fan is a unique feature because unchannelized sedimentary environment in the area occurs at slope level, thus in minor water depth in relation to all other deep-water sedimentary systems offshore Gulf of Lions. To cite this article: A.T. dos Reis et al., C. R. Geoscience 336 (2004).  相似文献   

6.
《Quaternary Science Reviews》2003,22(10-13):1191-1199
Pleistocene and Holocene transgressions advancing over the shelf that was exposed during glacial maxima drowned any continental and shallow marine sediments deposited during low sea level stands. To complement records from sequences exposed on land, core material from the shallow continental shelf is needed to reconstruct climatic and sea level fluctuations. Two cores drilled offshore Ashqelon off the southern Mediterranean coast of Israel, in a water depth of 10 and 25 m, were analyzed. Sedimentary facies and faunal analyses indicate that most of the sediments were deposited in nearshore environments, with only short intervals of continental episodes. Luminescence dating of alkali feldspar and quartz, as well as 14C ages of mollusks, date the cores to marine oxygen isotopic stages 6–1, between ∼140 and 5 ka. Comparison between the dating methods shows that most alkali feldspar ages agree with independent sea level and sedimentological constraints while quartz ages are overestimated.  相似文献   

7.
8.
Late Quaternary sapropels of the eastern Mediterranean differ from normal sediments in their clay mineral composition. Clay minerals in the sapropels studied here are only slightly affected, or are not affected at all by diagenetic alteration. This permits the observation of primary differences. During stagnation periods, the contribution of remote or accessory sources was reduced or even absent. Different circulation patterns and, particularly, a general decline in deeper water currents activity might be held responsible for the observed differences in the clay mineral composition of sapropels and normal sediments.
Zusammenfassung Die quartären Sapropele des östlichen Mittelmeeres unterscheiden sich von den normal marinen Sedimenten in ihrer Tonmineralzusammensetzung. Die hier untersuchten Tone der Sapropele zeigen nur geringe oder gar keine diagenetischen Veränderungen. Diese Tatsache erlaubt, Rückschlüsse auf primäre Unterschiede zu ziehen. Während der Stagnationsperioden war die Zufuhr von Tonen aus entfernten oder weniger wichtigen Liefergebieten stark vermindert. Unterschiedliche Zirkulation, besonders eine geringere Aktivität der Tiefenströmungen, scheinen die Ursache für die beobachteten Unterschiede in der Tonmineralzusammensetzung zwischen Sapropel- und normal-marinen Sedimenten

Résumé Les sapropels quaternaires de la Méditerranée orientale se distinguent des vases communes par la composition des minéraux argileux. Les argiles des sapropels examinés sont peu affectés par l'altération diagénétique, ce qui permet l'observation de différences primaires.On a conclu, que pendant les périodes de stagnation, la contribution des argiles provenant des sources éloignées ou secondaires, a été réduite ou même interrompue. Différentes conditions de circulation et, avant tout, la réduction d'activité des courants profonds, sont probablement responsables des différences observées dans la composition des minéraux argilezx des sapropels et des vases communes.

. , . , . , , , , .
  相似文献   

9.
Studies of oxygen isotopes in foraminifers from deepsea sediments yield information about rates of change of sea level, for hundreds of thousands of years with a resolution of roughly 1,000 years. The statistics regarding fluctuations for the late Quaternary (the last 900,000 years) suggest that a rise of 10 m per 1,000 years (1 m per century) is not unusual, even when the system resides within a warm stage, as now. Values near 2 m per century, while rare, are well within the range of a warm system, beyond the 5-percentile of the overall range. Once sea level is near +10 m, further rise becomes highly unlikely within the conditions of the late Quaternary, suggesting the presence of some kind of natural barrier; that is, lack of vulnerable ice. The present volume of ice generally considered vulnerable (Greenland and West-Antarctic ice sheet) adds up (roughly) to the observed limit.  相似文献   

10.
New observations concerning the degree of current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current are presented. Most of the observations are available from Eastern Valley, Laurentian Fan. Seabeam and SeaMARC I data reveal widespread current erosion along the valley over a distance of 200 km from the shelfbreak. Erosional valley-floor channels are preferentially developed adjacent to the valley margins and the flanks of intravalley highs. Asymmetric transverse bedforms (herein termed gravel waves) are moulded in a deflationary pebble and cobble lag that overlies the eroded valley floor. In contrast, at the distal limit of Eastern Valley, thick deposits of massive granule gravel indicate deposition beneath a decelerating turbidity current. Symmetrical transverse bedforms (herein termed macrodunes) are developed within these granule gravel sediments. The spatial distribution of both bedforms and the areas of erosive excavation suggest that the turbidity current in 1929 was accelerating over the first 100 km from the shelfbreak and was eroding and entraining sediment from the valley floor over a distance of at least 200 km. With the loss of lateral constraint at the distal limit of Eastern Valley the turbidity current spread laterally and started depositing sediment as it decelerated. Current-induced erosion of the valley floor represented a potential source of between 50 and 100 km3 of sediment for incorporation into the resulting turbidite.  相似文献   

11.
Magnesian calcite is an important sedimentary component in the deep-sea sediments of the eastern Mediterranean Sea, comprising an average of 20–50% of the carbonate fraction in most areas. The lack of any obvious biogenic source, plus similarities with magnesian-rich lutites from the Red Sea and deep-sea cements from other areas suggest that this magnesian calcite was precipitated inorganically. Although the exact mode of precipitation is not understood at present, it probably occurred at the water-sediment interface under elevated salinity and temperature conditions, such as those present in the modern eastern Mediterranean. Precipitation did not occur during periods of lower temperatures and/or salinities such as during the stagnant conditions caused by the influx of fresh waters from melting Pleistocene glaciers. The eastern Mediterranean magnesium-rich sediments appear to represent an intermediate stage between normal deep-sea sediments and those from the warm hpyersaline Red Sea. Normal deep-sea carbonates are composed almost entirely of biogenic calcite, whereas the Red Sea magnesian calcite alternates with layers of aragonite that were precipitated under elevated salinity and temperature conditions brought about by lowered stands of sea level.  相似文献   

12.
本文在总结前人对浊流沉积研究的基础上,分析前人对浊流与浊积岩、浊流沉积与浊流相模式的对应关系之间的认识,并对鲍马序列进行重新审视。在海底扇研究过程中,鲍马序列已经不能充分反映浊流沉积的全过程。鲍马序列所反应的沉积模式其实是由碎屑流、浊流、底流等多种形式流体组合和改造后的结果,海底扇沉积模式不能笼统归结为浊流沉积作用的结果。在完善重力流、底流等沉积作用的同时,建立一个与沉积作用相互联系的深海沉积系统,以对深海研究提供更好地指导和预测。  相似文献   

13.
A recent (100 yr old) turbidite is described from Hueneme Fan, California Continental Borderland. Dense sampling over the fan surface has allowed excellent delineation of the characteristics of this deposit. It exhibits Bouna DE sequences and has a distinctly bimodal, sandy silt grain size distribution. Through the use of generalized fluid dynamics equations, it is possible to reconstruct original flow properties of the current which deposited this material. The calculated velocities ranged from 10–90 cm s-1 and excess density (above ambient seawater) from 0·001–0·005 g cm-3 in the lower midfan and upper fan channel regions, respectively. Height of the current ranged from 5–15 m, on slopes from 1·5 to 0·15°. A total of 107 m3 of sediment was deposited during 10 days. The turbidity current is conjectured to have originated from direct river input during the floods of 1884. An older event is also described, which has distinctly different properties and origins. The grain sizes of this older deposit are much coarser, and sedimentary structures suggest higher flow regimes. This turbidite is conjectured to have been deposited from a higher density, faster current thought to have been generated by slumping. The need for a better understanding of the controls on the characteristics of turbidity currents and their effect on fan morphology is emphasized.  相似文献   

14.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

15.
Lithofacies analysis, pollen assemblages and radiocarbon age dates of 20 stratigraphic drill holes are used to develop an evolutionary history for late Quaternary sedimentation in two coastal embayments landward of the central Great Barrier Reef. Different physiographic settings of the embayments result in two contrasting styles of sedimentary sequence: (a) an exposed, moderate energy, beach barrier-lagoon system (Wyvuri Embayment) and (b) a protected, low energy, muddy inlet fill sequence (Mutchero Inlet). Despite sharp contrast in sequence style, similar depositional cycles occur in both embayments in response to late Quaternary sea level fluctuations including: (1) a last interglacial highstand (+2 m; c. 125 000 yr bp ) beach barrier (Wyvuri); (2) an early to mid-Holocene (8000–6100 yr bp ) transgressive beach barrier-lagoon (Wyvuri) and estuarine infill (Mutchero); and (3) mid-Holocene to present highstand beach barrier (Wyvuri) and estuarine (Mutchero) progradation. Preservation of such cycles in the stratigraphic record would produce a series of vertically stacked and offset linear barrier sands surrounded by lagoonal mud and fine grained shoreface sediment juxtaposed to muddy, estuarine infills. Sea level elevations are well recorded by the upward transition from Rhizophora-dominated intertidal mangrove mud to freshwater swamp (clearly identified by pollen analysis) and by the basal contacts of beach barrier sediments which sharply overlie the upper shoreface. Transgressive sedimentation is interrupted in both embayments by a constructional beach barrier (Wyvuri) and abbreviated progradation (Mutchero) corresponding to a — 5 m pause in relative sea level rise at c. 6800 yr bp . Sea level control of fine scale coastal sedimentation patterns is beginning to be widely recognized and provides an accurate analogue for stacked ancient sequences.  相似文献   

16.
A computer-based numerical model of turbidity current flow and sedimentation is presented that integrates geological observations with basic equations for fluid and sediment motion. The model quantifies those aspects of turbidity currents that make them different from better-understood fluvial processes, including water mixing across the upper flow boundary and the interactions between the suspended-sediment concentration and the flow dynamics and sedimentation. The model includes three numerical components: (1) a layer-averaged three-equation flow model for tracing downslope flow evolution using continuity and momentum equations, (2) a sedimentation/fluidization model for tracing sediment-size fractionation in sedimenting multicomponent suspensions and (3) a concentration-viscosity model for quantifying the changes in resistance of such suspensions toward fluid and sediment motion. The model traces the evolution of a model turbidity current in terms the layer-averaged flow velocity, flow thickness, sediment concentration distribution, and the rate of sedimentation and sediment size fractionation. It generates synthetic turbidites with downslope variations in thickness and grain-size structuring at each point along the flow path. This study represents an effort to evaluate quantitatively the effects of basin geometry, sediment supply and sediment properties on the mechanics of turbidity current flow and sedimentation and on the geometry and grain size characteristics of the resulting deposits.  相似文献   

17.
Distinctive planktonic foraminiferal assemblages which characterize particular late Quaternary sapropel layers in deep basin sediments from the eastern Mediterranean Sea have been identified using cluster analysis. Three distinct clusters allow for identification and intercore correlation of the nine sapropels deposited during the last 250,000 yr. Cluster 1, representing sapropel layers S1 and S9, exhibits low abundances of Neogloboquadrina dutertrei and high abundances of Globigerinoides ruber; Cluster 2, which groups S3, S5, and S7, contains high abundances of G. ruber, N. dutertrei, and Globigerina bulloides, and Cluster 3, which includes samples from S4, S6, and S8, is marked by extremely abundant N. dutertrei and G. bulloides, and rare G. ruber. Analysis of sedimentation rates in 14 cores reveals the following approximate ages for the sapropel layers: S2 = 52,000 yr B.P.; S3 = 81,000–78,000 yr B.P.; S4 = 100,000–98,000 yr B.P.; and S5 = 125,000–116,000 yr B.P. As previously suggested, sedimentation rates on the Mediterranean Ridge were determined to be relatively constant during the last 127,000 yr. In contrast, basin sedimentation rates have fluctuated markedly from lower rates during interglacial stage 5 to higher rates during the last glacial episode. These glacial/interglacial differences are most pronounced in the northern Ionian Basin, because of increased terrigenous sediment deposition during glacial episodes. Unusually high biogenic sedimentation rates occurred in an arc south of Crete during the deposition of sapropel S5, probably due to higher productivity in this region.  相似文献   

18.
Detailed sedimentological and stratigraphic analyses were carried out on seven Kullenberg cores collected across the Brazilian continental margin during the French cruises Byblos and Apsara III, in order to highlight the factors controlling the sediment flux distribution in the Southern Brazil Basin during the late Quaternary. On the continental slope and upper continental rise above 3000 m depth, sediment fluxes are important and highly variable (4·2–14·2 g cm?2 10?3 yr). The sediments show a pelagic or turbiditic character, depending on the width of the shelf and proximity of canyons. The material is characterized by high kaolinite contents, and originates from the coastal rivers draining the South American continent north of Rio de Janeiro. On the middle continental rise between 3000 and 4000 m depth, sediment fluxes are the lowest observed in the area (0·9 g cm?2 10?3 yr), because terrigenous input is trapped at shallower depths on the São Paulo Plateau. Pelagic settling is the dominant process. In the deep domains, below 4000 m depth, contouritic accumulations are developed on the path of the northwards moving Antarctic bottom water (AABW) currents. The deposits consist of fine-grained silty-clayey muds with very low carbonate contents. The sediment fluxes (1·45 g cm?2 10?3 yr) are higher than on the middle continental rise, as a consequence of fine-grained terrigenous supply derived from higher latitudes (Argentine Basin and Southern Ocean), and transported in the basin through the Vema Channel by the AABW currents. This material is characterized by high smectite and chlorite contents. These data reveal large sediment flux variations which are linked to distinct depth-related domains. Such a distribution is the consequence of the presence of two available sources of terrigenous sediments: (1) the Brazilian continental areas with a downslope material transport and a sediment distribution controlled by the morphology of the margin, and (2) the Argentine Basin with an alongslope material transport by deep-sea currents which dominate the sedimentation in the abyssal domains.  相似文献   

19.
Sedimentological, geochemical and micropalaeontological data from sediment cores in the northwestern Adriatic Sea were obtained to reconstruct the stratigraphic framework and palaeogeographic setting during the last post‐glacial sea‐level rise (14000–6000 yr BP). Four lithostratigraphic units were identified: (a) distal plain deposits (>14000 yr BP), submerged during the first phases of marine ingression; (b) coastal lagoon system; (c) barrier‐lagoon system, which is dated back to between 10019 ± 61 and 10228 ± 174 cal. yr BP from 14C dating on peat and shell remains; (d) marine prodelta deposits (<5500 yr BP). Geochemical data allow the identification of three distinct sediment sources: River Po, River Adige and Eastern Alpine rivers characterised by decreasing Ni/Mg ratios (50–70, 8–15 and 5–10, respectively) and Ba/Al ratios of 45–55, 55–65 and 35–45, respectively. The three sources display different relative abundances in time. During the Lateglacial, the Po is the main sediment source for the southern cores, whereas the Eastern Alps and the River Adige are the main sediment sources for the northern cores. This suggests a northern position of the Po River bed compared to previous studies. Coastal drowning led to a homogenization of the provenance signal within the sediments. Only after the marine transgression does a River Po signal appear in the northern cores. At the same time, in the southern cores the signal of Eastern Alpine rivers becomes stronger. Transgressive barrier‐lagoon and recent sediments do not display a predominant signal for provenance indicators. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
深水碎屑流与浊流混合事件层类型及成因机制   总被引:1,自引:0,他引:1  
《地学前缘》2017,(3):234-248
同一重力流事件形成的包含碎屑流和浊流及其之间过渡流体的混合流沉积形成的沉积层称为混合事件层。混合事件层主要包含下部砂质碎屑流-上部浊流混合事件层(类型1)和下部浊流-上部泥质碎屑流混合事件层(类型2)以及泥质碎屑流和浊流频繁互层混合事件层(类型3)3种类型。类型1主要为流体转化成因,包含液化作用、沉积物破碎、流体顶部剪切侵蚀、接触面不稳定性和波浪破碎、水力跳跃、流体头部与环境水体混合和多种机制作用下的整体转化7种成因认识。类型2和类型3主要涉及流体转化及流体差异搬运和沉降过程成因,包含碎屑流覆盖浊流、碎屑流内部差异沉降、浊流侵蚀转化、浊流膨胀减速、局部沉积物垮塌和浮力转化6种成因认识。下部砂质碎屑流上部浊流混合事件层和下部浊流上部厚层富含泥质碎屑的泥质碎屑流混合事件层在沉积近端到沉积远端均有分布,多呈条带状或树枝状;下部浊流上部贫泥质碎屑的泥质碎屑流混合事件层主要在沉积远端或基底相对低部位分布,多呈环带状或牛眼状。深水重力流混合事件层的分布主要受泥质含量、颗粒粒度、水体密度等内部因素和重力流成因机制、古地形和构造活动等外部因素综合控制。深水重力流混合事件层的形成及其分布研究对于丰富和完善重力流沉积理论,指导现阶段深水重力流砂体常规和非常规油气勘探及理解自然活动规律、防灾减灾具有重要意义。现阶段对深水重力流混合事件层的多种成因及形成条件和横向分布演化规律的研究还有待进一步深入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号