首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOx/air mixtures in a smog chamber operated inthe dynamic mode and collecting submicron secondary organic aerosol samples through a sampling train that consisted of an XAD denuder and a ZefluorTM filter. Oxidation products in the filter extracts were treated using O-(2,3,4,5,6,-pentafluorobenzyl)-hydroxylamine (PFBHA) to derivatize carbonyl groups followed by treatment with N,O-Bis(trimethylsilyl)-acetamide (BSTFA) to derivatize OH groups. The derivatized products were detected with a positive chemical ionization (CI) gas chromatography ion trap mass spectroscopy (GC-ITMS) system. The results of the GC-ITMS analyses were consistent with the previous studies that demonstrated the formation of multi-functional oxygenates. Denuder results showed that many of these same compounds were present in the gas, as well as, the particle phase. Moreover, evidence was found for a series of multifunctional acids produced as higher order oxidation products of the toluene/NOx system. Products having nearly the same mass spectrumwere also found in the ambient environment using identical analytical techniques. These products having multiple acid and alcoholic-OH moieties have substantially lower volatility than previously reported SOA products of the toluene photooxidation and might serve as an indicator for aromatic oxidation in the ambient atmosphere.  相似文献   

2.
The kinetics of heterogeneous reactions of NO2 with 17 polycyclic aromatic hydrocarbons (PAHs) adsorbed on laboratory generated kerosene soot surface was studied over the temperature range (255–330) K in a low pressure flow reactor combined with an electron-impact mass spectrometer. The kinetics of soot-bound PAH consumption due to their desorption and reaction with NO2 were monitored using off-line HPLC measurements of their concentrations in soot samples as a function of reaction time, NO2 concentrations in the gas phase being analyzed by mass spectrometer. No measurable decay of PAHs due to the reaction with NO2 was observed under experimental conditions of the study (maximum NO2 concentration of 5.5 × 1014 molecule cm−3 and reaction time of 45 min), which allowed to determine the upper limits of the first-order rate constants for the heterogeneous reactions of 17 soot-bound PAHs with NO2: k < 5.0 × 10−5 s−1 (for most PAHs studied). Comparison of these results to previous studies carried on different carbonaceous substrates, showed that heterogeneous reactivity of PAHs towards NO2 is, probably, dependent on the substrate nature even for resembling, although different carbonaceous materials. Results show that particulate PAHs degradation by NO2 alone is of minor importance in the atmosphere  相似文献   

3.
This study aims at evaluating the variability of the optical properties of chromophoric dissolved organic matter (CDOM) of rainwater during the cold season, specifically between Autumn and Winter periods. The spectroscopic characteristics of rainwater samples collected at a town (Aveiro) in western Portugal were assessed by UV-Vis absorbance and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopies. Rainwater samples showed similar characteristics to those of natural humic substances when analysed by UV-Vis absorbance spectroscopy, but a significant difference was observed in the volume weight average (VWA) of absorbances between Autumn and Winter. In general, the EEM fluorescence spectra of the Autumn and Winter samples disclosed the presence of six fluorophores with different VWA specific fluorescence intensities: three humic-like (λ excitation/λ emission ≈ 230/415 nm; 290/415 nm; and 340/415 nm) and three protein-like (λ excitation/λ emission ≈ 230/350 nm; 280/340 nm; and 225/300 nm), but one of the humic-like peaks (≈340/415 nm) does not always appear in the EEM fluorescence spectra of the Winter samples. During the cold season, chromophoric compounds are important constituents of rainwater dissolved organic matter and the presence of these highly absorbing and fluorescing compounds may exert a determining effect in atmospheric absorption of solar radiation.  相似文献   

4.
(NH4)2SO4, CaCl2, Na2SiO3 and NaNO3 were selected as surrogates of inorganic seed aerosols of ambient atmosphere of Chinese urban areas, respectively, to study their effects on the formation of secondary organic aerosol (SOA) in the toluene/CH3ONO/NOx photooxidation system. The SMPS and aerosol laser time-of-flight mass spectrometer (ALTOFMS) was used to measure the aerodynamic size and chemical composition of individual SOA particles in real-time. Experimental results indicate that either the growth or products of SOA is affected by the presence of inorganic seed aerosol. Inorganic seed aerosols would promote growth rates of SOA formation at the start of the reaction and inhibits its formation rate with prolonging the reaction time. In the case of about 100 μg m?3 seed aerosol load, the addition of Na2SiO3 induced a same growth rate of SOA formation as NaNO3. The influence of four individual seed aerosols on the generation of SOA decreased in the order of CaCl2 > (NH4)2SO4 > NaNO3, Na2SiO3. The presence of Na2SiO3 or NaNO3 has no obvious effect on the growth rates of SOA formation, but it does increase the yield of organic acid and nitrogen-containing organic compounds, respectively. Besides the significantly effect on the growth rate of SOA formation, the presence of CaCl2 or (NH4)2SO4 can lead to the formation of high-molecular weight species which is found to be positively correlated with the hygroscopic behavior of seed aerosols. The CaCl2 shows the strongest hygroscopic behavior among the four individual seed aerosols, and the most significant promotion effect on the formation of the high-molecular weight species. It is proposed that the SOA generation enhancement and high-molecular weight products are achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of CaCl2 and (NH4)2SO4 seed aerosols.  相似文献   

5.
The average composition and seasonal variations of atmospheric organic particulates with respect to n-alkanes, n-alkanoic acid, polycyclic aromatic hydrocarbon (PAHs), and nitrated polycyclic aromatic hydrocarbons (N-PAHs) were determined at the biggest municipal waste landfill in Algeria located in Oued Smar, 13 km east of downtown Algiers. Samplings were carried out from August 2002 to February 2003, and organic compounds adsorbed in air particles having an aerodynamic diameter lower than 10 μm (PM10) were characterized using gas chromatography coupled with mass spectrometric detection (GC/MSD). Total concentrations ranged from 828 to 11,068 ng per cubic meter of air for n-alkanes, from 1714 to 21,710 ng per cubic meter of air for n-alkanoic acids, from 13 to 212 ng per cubic meter of air for PAHs and from 93 to 205 pg per cubic meter of air for N-PAHs. n-Alkanoic acids accounted for 85 and 56% of the total organic composition of the aerosol measured in summer and winter, respectively, were the biggest fraction. The distribution profiles and the diagnostic ratios of some marker compounds allowed to identify the combustion and microbial activity as the major sources of particulate organic pollutants associated with direct emission. The year-time dependence of organic fraction content of aerosol in Oued Smar appeared to be related to average meteorological conditions as well as variability of rate and nature of materials wasted into the landfill.  相似文献   

6.
In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m  − 3 in the Northern Europe to 4 μg m  − 3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes.  相似文献   

7.
The atmospheric processing by ozone of peptide-containing mixed particles was investigated as proxies for biogenic and sea spray primary organic aerosol. Reactions were performed in a flow reactor and particle composition was monitored by photoelectron resonance capture ionization aerosol mass spectrometry. Mixed particles containing dipeptides in a saturated organic matrix of stearic and palmitic acids showed no reaction under ozonolysis at exposure levels of 2.5 × 10−4 atm s O3. However reactions of mixed particles of a dipeptide (Leu-Leu) in an unsaturated matrix (oleic acid) under the same conditions resulted in a rapid loss of the peptide ion signal, as well as the carrier matrix, and appearance of a number of ion signals corresponding to secondary products. High molecular weight imides and amides have been identified corresponding to possible reactions of ozonolysis products and reactive intermediates (i.e. aldehydes, stabilized Criegee intermediates). Additionally, tautomerisation of the imides to enamines in the particle phase is postulated, with ozonolysis of the enamine followed by regioselective decomposition of the primary ozonide to form an amide whereby the peptide incorporates an aldehydic group at the N-terminus. The same general reactivity pattern was observed for mixed particles of diglycine and oleic acid. This behavior was not observed in solution phase experiments, where the tautomerisation favors the more stable imine form, indicating that particulate phase reactions of this nature may be dependent on the specific particle physical properties. The implications of this chemistry with respect the atmospheric aging of cell-derived organic aerosol are discussed.  相似文献   

8.
Ambient respirable particles (PM10; aerodynamic diameter ≤10 μm) collected in a tropical urban environment (Delhi, India) during December 2008-November 2009 were characterized with respect to 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and 8 major and trace metals (Fe, Mn, Cd, Cu, Ni, Pb, Zn and Cr). Concentrations of Σ16PAHs (annual mean: 74.7 ± 50.7 ng m−3, range 22.1–258.4 ng m−3) and most metallic species were at least an order of magnitude greater than values reported from similar locations worldwide. Seasonal variations in Σ16PAHs were significant (p < 0.001) with highest levels in winter while crustal and anthropogenic metals showed significant but mutually opposite seasonal dependence. Statistically significant associations were observed between chemical species and various meteorological parameters. The PAH profile was dominated by combustion-derived large-ring species (~85%) that were essentially local in origin. Principal component analysis–multiple linear regression (PCA-MLR) apportioned four sources: crustal dust (73%), vehicular emission (21%), coal combustion (4%) and industrial emission (2%) that was further validated by hierarchical cluster analysis (HCA). Temporal trend analysis showed that crustal sources were predominant in summer (p < 0.05) while the remaining sources were most active in winter. Summertime intrusions of Saharan dust were identified with the help of aerosol maps and air parcel backward trajectories. Inhalation cancer risk assessment showed that up to 3,907 excess cancer cases (357 for PAHs, 122 for Cd, 2040 for Cr (VI) and 1387 for Ni) are likely in Delhi considering lifetime inhalation exposure to these chemicals at their current concentrations.  相似文献   

9.
The carbon kinetic isotope effects (KIEs) in the reactions of several unsaturated hydrocarbons with chlorine atoms were measured at room temperature and ambient pressure using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the unlabeled and labeled hydrocarbon reaction k 12/k 13, are greater than unity or normal KIEs. The KIEs, reported in per mil according to Cl ɛ = (k 12/k 13−1) × 1000‰ with the number of experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants were determined concurrently to the KIE measurements. For the reactions of cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all × 10−10 cm3 molecule−1 s−1. The KIEs in reactions of aromatic hydrocarbons with Cl atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on carbon number. This can be explained by competing contributions of normal and inverse isotope effects of individual steps in the reaction mechanism. Implications for the symmetries of the transition state structures in these reactions and the potential relevance of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed.  相似文献   

10.
Summary The qualitative agreement of two climate models, HADCM2 and ECHAM3, on the response of surface climate to anthropogenic climate forcing in the period 2020 – 2049 is studied. Special attention is paid to the role of internal climate variability as a source of intermodel disagreement. After illustrating the methods in an intermodel comparison of simulated changes in June–August mean precipitation, some global statistics are presented. Excluding surface air temperature, the four-season mean proportion of areas in which the two models agree on the sign of the climatic response is only 53 – 60% both for increases in CO2 alone and for increases in CO2 together with direct radiative forcing by sulphate aerosols, but somewhat larger, 59 – 70% for the separate aerosol effect. In areas where the response is strong (at least twice the standard error associated with internal variability) in both models, the agreement is better and the contrast between the different forcings becomes more marked. The proportion of agreement in such areas is 57 – 75% for the response to increases in CO2 alone, 64 – 84% for the response to combined CO2 and aerosol forcing, and as high as 88 – 94% for the separate aerosol effect. The relatively good intermodel agreement for aerosol-induced climate changes is suggested to be associated with the uneven horizontal distribution of aerosol forcing. Received December 2, 1998 Revised May 5, 1999  相似文献   

11.
The indoor PM2.5 aerosol samples for charcoal broiling source under Chinese traditional charbroiling and the ambient fine aerosols samples (PM2.5) were collected in Beijing to investigate the characteristics of the charcoal broiling source and its impact on the fine organic aerosols in the atmosphere. The concentrations of 20 species of the trace organic compounds, including polycyclic aromatic hydrocarbons (PAHs), fatty acids, levoglucosan, and cholesterol in PM2.5 were identified and quantified by GC/MS. The total PAHs and fatty acids emitted from charcoal broiling to PM2.5 were 8.97 and 87,000 ng mg−1 respectively. The concentrations of the light molecular weight (LMW) 3- and 4-ring PAHs were much higher than those of the high molecular weight (HMW) 5- and 6-ring PAHs. Fatty acids were the most abundant species in source profile, accounting for over 90% of all identified organic compounds. More polyunsaturated fatty acid (linoleic acids) than the saturated fatty acid (stearic acids) emitted in the cooking. Charcoal broiling is a minor source of PAHs compared to the source of biomass burning. Comparing the ratios of levoglucosan/fatty acid and levoglucosan/cholesterol in the charcoal broiling samples to the ambient samples, it is evident that meat cooking is an important source of fatty acids, but a less important source of cholesterol. Cooking, as one of the source of fine organic particles, plus other anthropogenic sources would be related to the formation of the severe haze occurred and spread over the urban atmosphere in most of the cities of China in the past several years.  相似文献   

12.
Outdoor smog chamber experiments were performed to investigate gas/particle (G/P) partitioning behavior of aldehyde compounds in atmospheric acidic aerosols. Diesel soot and wood smoke aerosols were selected as acidic aerosols and octanal, decanal, undecanal, and cis-pinonaldehyde for aldehydes compounds. Aerosol acidity was measured with the equivalent sulfuric acid amounts in aerosol mass: 0.2–0.6 wt% in diesel soot and 0.04–0.1 wt% in wood smoke aerosols. Experimentally determined partitioning coefficients of aldehyde along with other classes of semivolatile organic compounds (SOCs) were compared with the estimation. All experimental G/P partitioning coefficients of aldehyde compounds were 10–200 times higher than estimated partitioning coefficients. Aldehyde partitioning coefficients in wood soot were similar or less than diesel soot aerosols.  相似文献   

13.
This paper deals with the atmospheric concentrations of PM5 and PM2.5 particulate matter and its water soluble constituents along with the size distribution of ions and spatial variation at three different residential environments in a semiarid region in India. Samples were collected from the indoors and outdoors of urban, rural and roadside sites of Agra during October 2007–March 2008. The mean concentrations of PM2.5 indoors and outdoors were 178 μgm−3 and 195 μgm−3 while the mean concentrations of PM5 indoors and outdoors were 231.8 μgm−3 and 265.2 μgm−3 respectively. Out of the total aerosol mass, water soluble constituents contributed an average of 80% (33% anions, 50% cations) in PM5 and 70% (29% anions, 43% cations) in PM2.5. The indoor–outdoor ratio of water soluble components suggested additional aerosol indoor sources at rural and roadside sites. Indoor–outdoor correlations were also determined which show poor relationships among concentrations of aerosol ions at all three sites. Univariate Pearson correlation coefficients among water soluble aerosols were determined to evaluate the relationship between aerosol ions in indoor and outdoor air.  相似文献   

14.
Both aerosol and rainwater samples were collected and analyzed for ionic species at a coastal site in Southeast Asia over a period of 9 months (January–September 2006) covering different monsoons. In general, the occurrence and distribution of ionic species showed a distinct seasonal variation in response to changes in air mass origins. Real-time physical characterization of aerosol particles during rain events showed changes in particle number distributions which were used to assess particle removal processes associated with precipitation, or scavenging. The mean scavenging coefficients for particles in the range 10–500 nm and 500–10 μm were 7.0 × 10−5 ± 2.8 × 10−5 s−1 and 1.9 × 10−4 ± 1.6 × 10−5 s−1, respectively. A critical analysis of the scavenging coefficients obtained from this study suggested that the wet removal of aerosol particles was greatly influenced by rain intensity, and was particle size-dependent as well. The scavenging ratios, another parameter used to characterize particle removal processes by precipitation, for NH4 +, Cl, SO4 2−, and NO3 were found to be higher than those of Na+, K+, and Ca2+ of oceanic and crustal origins. This enrichment implied that gaseous species NH3, HCl, and HNO3 could also be washed out readily. These additional sources of ions in precipitation presumably counter-balanced the dilution effect caused by high total precipitation volume in the marine and tropical area.  相似文献   

15.
The contribution of emissions from agricultural facilities is rapidly becoming a major concern for local and regional air quality. Characterization of particle properties such as physical size distribution and chemical composition can be valuable in understanding the processes contributing to emissions and ultimate fate of particulate matter from agricultural facilities. A measurement campaign was conducted at an Iowa, deep-pit, three-barn swine finishing facility to characterize near-source ambient particulate matter. Size-specific mass concentrations were determined using minivol samplers, with additional size distribution information obtain using optical particle counters. Particulate composition was determined via ion chromatographic analysis of the collected filters. A thermal-CO2 elemental/organic carbon analyzer measured particulate carbon. The chemical composition and size distribution of sub-micron particles were determined via real-time aerosol mass spectrometry. Primary particulate was not found to be a major emission from the examined facility, with filter-based impactor samples showing average near-source increases (~15–50 m) in ambient PM10 of 5.8 ± 2.9 μg m−3 above background levels. PM2.5 also showed contribution attributable to the facility (1.7 ± 1.1 μg m−3). Optical particle counter analysis of the numerical size distributions showed bimodal distributions for both the upwind and downwind conditions, with maximums around 2.5 μm and below the minimum quantified diameter of 0.3 μm. The distributions showed increased numbers of coarse particles (PM10) during periods when wind transport came from the barns, but the differences were not statistically significant at the 95% confidence level. The PM10 aerosols showed statistically increased concentrations of sulfate, nitrate, ammonium, calcium, organic carbon, and elemental carbon when the samplers were downwind from the pig barns. Organic carbon was the major constituent of the barn-impacted particulate matter in both sub-micron (54%) and coarse size (20%) ranges. The AMS PM1 chemical speciation showed similar species increases, with the exception of and Ca+2, the latter not quantified by the AMS.  相似文献   

16.
Aerosol and rain samples were collected between 48°N and 55°S during the KH-08-2 and MR08-06 cruises conducted over the North and South Pacific Ocean in 2008 and 2009, to estimate dry and wet deposition fluxes of atmospheric inorganic nitrogen (N). Inorganic N in aerosols was composed of ~68% NH4+ and ~32% NO3 (median values for all data), with ~81% and ~45% of each species being present on fine mode aerosol, respectively. Concentrations of NH4+ and NO3 in rainwater ranged from 1.7–55 μmol L−1 and 0.16–18 μmol L−1, respectively, accounting for ~87% by NH4+ and ~13% by NO3 of total inorganic N (median values for all data). A significant correlation (r = 0.74, p < 0.05, n = 10) between NH4+ and methanesulfonic acid (MSA) was found in rainwater samples collected over the South Pacific, whereas no significant correlations were found between NH4+ and MSA in rainwater collected over the subarctic (r = 0.42, p > 0.1, n = 6) and subtropical (r = 0.33, p > 0.5, n = 6) western North Pacific, suggesting that emissions of ammonia (NH3) by marine biological activity from the ocean could become a significant source of NH4+ over the South Pacific. While NO3 was the dominant inorganic N species in dry deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+ (42–99% of the wet deposition fluxes for total inorganic N). We estimated mean total (dry + wet) deposition fluxes of atmospheric total inorganic N in the Pacific Ocean to be 32–64 μmol m−2 d−1, with 66–99% of this by wet deposition, indicating that wet deposition plays a more important role in the supply of atmospheric inorganic N than dry deposition.  相似文献   

17.
Nitrogen-containing organic compounds (NOC) formed from secondary organic aerosols (SOA) age via reaction with reduced nitrogen species are a vital class of brown carbon compounds. NOC compounds from ammonia (NH3) gas-aging of benzene SOA were investigated in present study, and the experiments were performed by irradiating benzene/CH3ONO/NO/NH3 air mixtures in a home-made smog chamber. The particulate NOC products of aged benzene SOA in the presence of NH3 were measured by UV-Vis spectrophotometer, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with Fuzzy C-Means (FCM) clustering algorithm, respectively. Experimental results demonstrated that NH3 has significant promotion effect on benzene SOA formation. Organic ammonium salts, such as ammonium glyoxylate, ammonium 6-oxo-2,4-hexadienoiclate, which are formed from NH3 reactions with gaseous organic acids were detected as the major particulate NOC products of NH3-aged benzene SOA. 1H–imidazole, 1H–imidazole-2-carbaldehyde and other imidazole products via the heterogeneous reactions between NH3 and dialdehydes of benzene SOA were successfully detected as important brown carbon constituents. The formation of imidazole products suggests that some ambient particles contained organonitrogen compounds may be come from this mechanism. The results of this study may provide valuable information for discussing NH3 deposition and SOA aging mechanisms.  相似文献   

18.
Global secondary organic aerosol formation (SOA) is currently assumed to be between 11.2 and 270 Tg/yr. This range of uncertainty is reflected in the gas-phase chemistry. In this study, we focus on the feedback of SOA formation on the concentrations of most important trace gases such as ozone, and compare it to the impact of monoterpene gas-phase chemistry with a newly developed reduced monoterpene mechanism (MMM) for either α- or β-pinene in the global chemistry transport model MATCH-MPIC. With this set-up an uncertainty range of 3.5–4.0% increase in annually averaged tropospheric ozone was found to be caused by the gas-phase chemistry of the investigated monoterpenes. Moreover, a strong feedback has been observed for NOx, HCHO, HNO3 and PAN. These observations are affected remarkably by different SOA formation approaches like partitioning or saturation vapour pressure limitation and by the structure of the monoterpene used, e.g. reducing the impact on tropospheric ozone to 1.2–1.9% by using the partitioning approach versus the simulation with gas-phase chemistry only. Therefore, a consideration of the individual processes associated with SOA formation seems to be necessary to reduce the uncertainty in SOA formation and to understand the impact of VOCs on atmospheric chemistry. An erratum to this article is available at .  相似文献   

19.
《Atmospheric Research》2008,87(3-4):249-260
The average composition and seasonal variations of atmospheric organic particulates with respect to n-alkanes, n-alkanoic acid, polycyclic aromatic hydrocarbon (PAHs), and nitrated polycyclic aromatic hydrocarbons (N-PAHs) were determined at the biggest municipal waste landfill in Algeria located in Oued Smar, 13 km east of downtown Algiers. Samplings were carried out from August 2002 to February 2003, and organic compounds adsorbed in air particles having an aerodynamic diameter lower than 10 μm (PM10) were characterized using gas chromatography coupled with mass spectrometric detection (GC/MSD). Total concentrations ranged from 828 to 11,068 ng per cubic meter of air for n-alkanes, from 1714 to 21,710 ng per cubic meter of air for n-alkanoic acids, from 13 to 212 ng per cubic meter of air for PAHs and from 93 to 205 pg per cubic meter of air for N-PAHs. n-Alkanoic acids accounted for 85 and 56% of the total organic composition of the aerosol measured in summer and winter, respectively, were the biggest fraction. The distribution profiles and the diagnostic ratios of some marker compounds allowed to identify the combustion and microbial activity as the major sources of particulate organic pollutants associated with direct emission. The year-time dependence of organic fraction content of aerosol in Oued Smar appeared to be related to average meteorological conditions as well as variability of rate and nature of materials wasted into the landfill.  相似文献   

20.
The aqueous phase acid-catalyzed reaction of methanol (CH3OH) with nitric acid (HNO3) to yield methyl nitrate (CH3ONO2) under atmospheric conditions has been investigated using gas-phase infrared spectroscopy. Reactions were conducted in aqueous sulfuric acid solutions (50.5–63.6 wt.%) with [CH3OH] = 0.00005–0.005 M and [HNO3] = 0.02–0.21 M, at 278.2–328.6 K. Methyl nitrate production rates increased linearly with CH3OH and HNO3 concentrations and exponentially with sulfuric acid weight percent within the regime studied. Rates increased linearly with nitronium ion concentration, indicating that the reaction involves as the nitrating agent under these conditions. At 298 K, the rate of methyl nitrate production can be calculated from k obs [CH3OH][HNO3], where k obs  = 2.337 × 10−13(exp(0.3198*wt.% H2SO4)) when the solubility of CH3ONO2 in acidic solution is approximated by H* for pure water. The temperature dependence of the rate coefficient is related to solution composition, with activation energies of 59 and 49 kJ/mol at 51.1 and 63.6 wt.% H2SO4, respectively, when k is calculated from rate. The temperature dependence has also been parameterized for application to the atmosphere, but the small quantities of present in aerosol particles will result in methyl nitrate production rates too small to be of significance under most atmospheric conditions. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号