首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sublimation of falling snow may be an important component of the atmospheric water budget of the Mackenzie River Basin and many parts of the Arctic. To investigate this issue, a simple sublimation model is used along with surface precipitation observations and sonde data obtained during the autumn 1994 Beaufort and Arctic Storms Experiment (BASE). Model results are then compared with actual precipitation measurements at Inuvik and Tuktoyaktuk, sites in Northern Canada, to approximate mass loss due to sublimation. The sublimation results are found to vary in concert with cloud base height, precipitation intensity aloft and the nature of the precipitation. Atmospheric conditions are furthermore examined over a wide range of the Arctic, especially the Mackenzie River Basin, to assess to what degree the results can be generalized. The presence of a relatively dry near-surface layer, a favourable environment for sublimation, is a key feature of most sites during the early autumn storm period. Estimates of sublimational mass losses are found over Inuvik and Tuktoyaktuk using sonde derived cloud base heights and temperature and humidity profiles. Sublimation losses for such sites are found to be of the order of 40–60%, which shows that sublimation is indeed a significant process over the Mackenzie Basin and needs to be well handled in climate models. However, increasing the vertical resolution of the sublimation model to that of climate scales can dramatically affect predicted sublimation amounts; how to properly account for sublimation then remains a difficult task.  相似文献   

2.
We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.  相似文献   

3.
The flow and turbulence quantities governing dispersion in katabatic flows vary with both height and downslope distance. This variation cannot be accounted for in conventional plume dispersion models. In this study, three random-walk models of varying complexity are formulated to simulate dispersion in katabatic flows, and their strengths and weaknesses are discussed. The flow and turbulence parameters required by these models are determined from a high-resolution two-dimensional katabatic flow model based on a turbulent kinetic energy closure. Random-walk model calculations have been performed for several values of source height and slope angle to examine the influence of these parameters on dispersion. Finally, we simulated the perfluorocarbon and heavy methane tracer releases for Night 4 of the 1980 ASCOT field study over a nearly two-dimensional slope in Anderson Creek Valley, California. The observed peak concentrations are generally well-predicted. The effects of the pooling of the drainage air could not be taken into account in our katabatic flow model and, consequently, the predicted concentrations decay much more rapidly with time than the observed values.  相似文献   

4.

利用中尺度模式WRF对2016年6月30日—7月1日华中地区一次暴雨过程进行数值模拟试验,探讨不同分辨率和云微物理方案对降水的影响,结果表明:(1)模拟雨带与实况基本一致,但模拟暴雨范围偏小;总雨区模拟对分辨率更为敏感,大暴雨区模拟对分辨率和云微物理方案均很敏感;采用不同分辨率时,降水模拟能力受云微物理过程与积云参数化共同影响。TS评分显示,12 km分辨率和Lin微物理方案组合对特大暴雨模拟效果最好。(2)不同云微物理方案模拟各水凝物粒子发展和演变主要取决于其本身特点。Lin方案多云冰和霰、少雪;Thompson方案多雪,几乎不含云冰和霰;Morrison方案3种冰相粒子分布较为均匀,Lin方案模拟冰相粒子含量被低估,而Thompson方案和Morrison方案模拟冰相粒子含量被高估。(3)不同方案模拟上升气流强弱将影响水凝物粒子分布,在系统成熟期,Lin方案模拟上升气流直立,中高层向后出流弱,冰相粒子集中;Thompson方案和Morrison方案模拟倾斜上升气流在中高层向后出流强,大量冰相粒子被带出而不能形成有效降水。

  相似文献   

5.
A numerical model of airflow above changes in surface roughness and thermal conditions is extended to include cases with stable thermal stratification within the internal boundary-layer. The model uses a mixing-length approach with empirical forms for M and H.Results are presented for some basic cases and an attempt is then made to compare results given by the model with the experimental results of Rider, Philip and Bradley. Tolerable agreement is achieved. The importance of roughness change and thermal stability effects in the diffusion of heat and moisture near a leading edge is emphasised.Notation A Refers to Taylor (1970) - B Businger-Dyer constant (= 16.0) in forms for M and H - C Constant in form for in stable case - c p Specific heat at constant pressure - E Scaled absolute humidity - g Acceleration due to gravity - H Upward vertical heat flux - H 0, H 1 Surface heat fluxes for x <0, x0 - H E Upward latent heat flux - k Von Kármán's constant (= 0.4) - K H K W Eddy transfer coefficients for heat and water vapour - L Monin-Obukhov length - L H Latent heat of evaporation for water - m Ratio of roughness lengths ( = z 1/z 0) - RPB Refers to Rider et al. (1964) - RL* Non-dimensional parameter (see Equations (9), (20a), (22a), (24a)) - R* Net radiation less ground heat flux (see Equations (15), (16)) - T Scaled temperature - T 1 Downstream scaled surface temperature - u 0 u 1(x) Surface friction velocities for x <0, x0 - U, W Horizontal and vertical mean velocities - x, z Horizontal and vertical co-ordinates - Z i Local roughness length - z 0, z i Roughness lengths for x < 0, x 0 - Temperature - 0, 1 Surface temperatures for x<0, x0 - E Non-dimensional absolute humidity gradient - H Non-dimensional temperature gradient of heat flux - M Non-dimensional wind shear - = M = H = E an assumption used in stable conditions - Air density - Absolute humidity - w Density of water - Kinematic shear stress - Logarithmic height scale (= ln(z+z 1)/z 1)  相似文献   

6.
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, ζ, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.  相似文献   

7.
A simplified coupled ocean–atmosphere model, consisting of a one-layer bidimensional ocean model and a one-layer unidimensional energy balance atmospheric model [J. Clim. 13 (2000) 232] is used to study the unstable interactions between zonal winds and ocean gyres. In a specific range of parameters, decadal variability is found. Anomalies, quite homogeneous zonally, show small-scale wavelength in latitude: perturbations emerge and grow at the southern limb of the intergyre boundary and propagate southward before decaying. The wind stress anomalies are proportional to the meridional gradient of the atmospheric temperature anomalies: this ratio acts as a positive amplification factor, as confirmed by a parameter sensitivity analysis. Assuming zonally-averaged anomalies harmonic in the meridional direction, a very simple analytical model for the perturbations is derived, based on forced Rossby wave adjustment of the western boundary current and its associated anomalous heat transport: it accounts for the scale selection, the growth and the southward propagation of sea surface temperature anomalies in the subtropical gyre. The latter is not only due to the slow advection by the mean current, but to a prevailing mechanism of self-advecting coupled oceanic and atmospheric waves, out of phase in latitude. Relevance to the observational record is discussed.  相似文献   

8.
The formation of dew, deposition of frost and accumulation of snow mainly on the upper domes of a non-ventilated net radiometer seriously affect the measurement of available energy (net radiation). Net radiometers measure radiation, and energy balances and are widely used for estimation of evapotranspiration throughout the world. To study the effects of dew, frost, and snow on a non-ventilated net radiometer, a radiation station was set up which uses 2 CM21 Kipp & Zonen pyranometers (one inverted), 2 CG1 Kipp & Zonen pyrgeometers (one inverted), along with a Q7.1 net radiometer (Radiation & Energy Balance Systems, Inc.; REBS) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using 4 CV2 Kipp & Zonen ventilation systems. The net radiometer was not ventilated. The ventilation of pyranometers and pyrgeometers prevents dew and frost deposition and snow accumulation which otherwise would disturb measurements. All sensors were installed at about 3.0 m above the ground, which was covered with natural vegetation during the growing season (May–September). The incoming and outgoing solar or shortwave radiation, the incoming (atmospheric) and outgoing (terrestrial) longwave radiation, and the net radiation have been continuously measured by pyranometers, pyrgeometers and a net radiometer, respectively, since 1995. These parameters have been measured every 2 s and averaged into 20 min. To evaluate the effects of dew, frost, and snow, three days were chosen: 26 April 2004 with early morning dew, 6 January 2005 with an early morning frost, and the snowy day of 24 February 2005. Dew formation, frost deposition, and snow accumulation occurred mainly on the upper dome of the non-ventilated Q7.1 net radiometer on the related days, while the ventilated Kipp & Zonen system was free of dew, frost and snow. Net radiation measured by the non-ventilated net radiometer Rn,unvent. during dew and frost periods of the above-mentioned days was greater than ventilated ones Rn,vent. (− 0.2 MJ m− 2 vs. − 0.8 MJ m− 2 during almost 4 h on 26 April 2004, and − 0.2 MJ m− 2 vs. − 0.7 MJ m− 2 during almost 6.5 h on 6 January 2005). The reason for higher reading by the non-ventilated net radiometer during dew and frost periods was due to emission of additional longwave radiation from water and ice crystals formed mainly on the upper dome of the Q7.1 net radiometer. In contrast, during the snowy day of 24 February 2005, the Rn,unvent. was less than Rn,vent. (− 4.00 MJ m− 2 vs. 0.77 MJ m− 2, mainly from sunrise to sunset). The extremely low Rn,unvent. measured by the non-ventilated net radiometer on 24 February 2005 is due to blocking of the incoming solar radiation (mainly diffuse radiation) by the snow-covered upper dome.  相似文献   

9.
青藏高原积雪异常对高原地面加热的影响   总被引:7,自引:0,他引:7  
On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimated, and their variations in more-snow year (1997/1998) and less-snow year (1996/1997) are analyzed comparatively. The relationships between snow cover of the Tibetan Plateau and plateau's surface heating to the atmospheric heating are also discussed. The difference between more-snow and less-snow year in spring is remarkably larger than that in winter. Therefore, the effect of anomalous snow cover of the Tibetan Plateau in winter on the plateau heating appears more clearly in the following spring of anomalous snow cover.  相似文献   

10.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

11.
一个描述河陆风变化的数值模式及其数值实验   总被引:7,自引:1,他引:7  
本文设计了一个包括水平及垂直扩散、牛顿冷却的二维46层非弹性运动方程模式来模拟及研究河陆风的变化。在模式中包括了太阳辐射;地-气系统的长波辐射;地表面、河表面向大气的感热与潜热输送以及地表面向土壤层的热传导等物理过程。 本模式采用分解算法及隐式时间差分方案,计算结果表明,这个模式无论对稳定层结或不稳定层结其计算都是稳定的,且所需计算时间也是很节省的,其计算结果是符合实际的。  相似文献   

12.
Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.  相似文献   

13.
The results of an observational and modeling study of the nocturnal slope winds in a simple valley are presented. The valley was approximately 225 m deep in the region of the measurements, and featured a uniform slope angle of approximately 23 ° on one of its sidewalls. The wind and temperature structure of the katabatic flows on the valley sidewalls were measured with tower-mounted instruments, and a Doppler sodar and instruments on a tethered balloon and a 61-m tower were used to determine the atmospheric conditions near the center of the valley. The temperature structure of the slope flows was summarized by characteristic scale parameters h and T for the inversion depth and strength, respectively. On the sidewalls 50 m above the valley floor, the inversion depths were generally smaller and the inversion strengths were weaker than they were on the sidewalls 100 m higher. These results differ significantly from those obtained over a simple slope of an isolated mountain or ridge. The down-valley winds are shown to be important in limiting the strength of the sidewall inversions. The formation of an inversion in the valley also has a pronounced effect on the structure of the slope flows. Numerical simulations suggest that the presence of adiabatic layers in the valley atmosphere is associated with decreases in the slope-flow inversion depth with increasing downslope distance. The simulations also indicate that the length scales that characterize the momentum and inversion depths behave similarly in flows down simple slopes but not in flows down the sidewalls of a valley.Work supported by the U.S. Army Research Office under Contract DA-AG29-K-0231 and the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.  相似文献   

14.
The correlation of mechanical transfer current from the atmosphere to the ground with the process of space charge formation as a result of conductivity current divergence near ground is under discussion in this research. Experimental data of conductivity current and mechanical transfer current acquired at three observation points for different meteorological conditions are analyzed. In particular, the peculiarities of mechanical charge transfer to ground under different stratifications of the surface layer are under discussion.  相似文献   

15.
16.
Treatment of frozen soil and snow cover in the land surface model SEWAB   总被引:3,自引:0,他引:3  
Summary  The land surface model SEWAB (Surface Energy and Water Balance) is designed to be coupled to both, atmospheric and hydrological models. Its application in mid and high latitudes requires the inclusion of freezing and thawing processes within the soil and the accumulation and ablation of a snow cover. These winter processes are parameterised with a minimum number of empirical formulations in order to assure reasonable computation times for an application in climate and sensitivity studies yet accounting for all important processes. Meteorological forcing data and measurements of snow depth, soil temperature and liquid soil water content at two locations in the mid-west of North America are used to test the model. Generally the simulated snow depth matches the measurements, remaining differences in snow depth can be explained by uncertainties in snow density, blowing snow and errors in precipitation measurements. The simulated soil temperature and liquid soil water content compare well with the measurements, showing the isolating effect of the snow cover. Received August 25, 2000 Revised January 19, 2001  相似文献   

17.
The aim of this work is to investigate the recent past and future patterns of the Etesian winds, one of the most persistent localized wind systems in the world, which dominates the wind regime during warm period over the Aegean Sea and eastern Mediterranean. An objective classification method, the Two Step Cluster Analysis (TSCA), is applied on daily data from regional climate model simulations carried out with RegCM3 for the recent past (1961–1990) and future periods (2021–2050 and 2071–2100) constrained at lateral boundaries either by ERA-40 reanalysis fields or the global circulation model (GCM) ECHAM5. Three distinct Etesian patterns are identified by TSCA with the location and strength of the anticyclonic action center dominating the differences among the patterns. In case of the first Etesian pattern there is a ridge located over western and central Europe while for the other two Etesian patterns the location of the ridge moves eastward indicating a strong anticyclonic center over the Balkans. The horizontal and vertical spatial structure of geopotential height and the vertical velocity indicates that in all three Etesian patterns the anticyclonic action center over central Europe or Balkan Peninsula cannot be considered as an extension of the Azores high. The future projections for the late 21st century under SRES A1B scenario indicate a strengthening of the Etesian winds associated with the strengthening of the anticyclonic action center, and the deepening of Asian thermal Low over eastern Mediterranean. Furthermore the future projections indicate a weakening of the subsidence over eastern Mediterranean which is rather controlled by the deepening of the south Asian thermal Low in line with the projected in future weakening of South Asian monsoon and Hadley cell circulations.  相似文献   

18.
Summary  Reasonably simple yet realistic modelling schemes simulating the heat and mass balance within a snow pack are required to provide the necessary boundary conditions for meteorological and hydrological models. An improvement to a one-layer snow energy balance model (UEB, Tarboton etal., 1995) is proposed to better simulate snow surface and snow pack temperatures and, as a result, snowmelt. The modified scheme is assessed against measured snow data from the WINTEX field campaign during spring 1997 in northern Finland, and compared with results from a complex multi-layer snow energy balance scheme. The results show that separation of a one-layer representation into two snow layers and a soil layer enables a more realistic simulation of soil and snow temperatures as well as of the snow surface temperature. The two-layer and the multi-layer snow schemes yielded comparable results for internal processes in the snow whenever the simulation was carried out under similar boundary forcing. The modified scheme is proposed for use as a sub-scheme in meteorological or hydrological models, or as a tool for simulating spatially-variable snowmelt and the surface energy balance during seasonal snow cover. Received November 18, 1999 Revised June 17, 2000  相似文献   

19.
季仲贞  郑朝洲 《大气科学》1990,14(4):395-403
本文研究一个带强迫、耗散的非线性准地转海流方程四系数谱模式的定常解及其稳定性问题。指出当风应力项充分强且摩擦系数足够小时,该定常方程有多态解存在,而在其它情形下只存在唯一的稳定解。文中还指出,对于有三个解出现的情形,其中有一个解总是不稳定的;另一个是带有大振幅第一分量的解,由于非线性项起着很大的控制作用,使得该解总是稳定的;第三个是Sverdrup解,它可能是稳定的,也可能是不稳定的。此外,通过对方程进行数值计算还揭示了稳定解对参数R和ε的依赖状况。  相似文献   

20.
Summary  We compared two one-dimensional simulation models for heat and water fluxes in the soil-snow-atmosphere system with respect to their mathematical formulations of the surface heat exchange and the snow pack evolution. They were chosen as examples of a simple one-layer snow model and a more detailed multiple-layer snow model (SNTHERM). The snow models were combined with the same one-dimensional model for the heat and water balance of the underlying soil (CoupModel). Data from an arable field in central Sweden (Marsta), covering two years (1997–1999) of soil temperature, snow depth and eddy-correlation measurements were successfully compared with the models. Conditions with a snow pack deeper or shallower than 10 cm and bare soil resulted in similar discrepancies. The simulated net radiation and sensible heat flux were in good agreement with that measured during snow-covered periods, except for situations with snowmelt when the downward sensible heat flux was overestimated by 10–20 Wm−2. The results showed that the uncertainties in parameter values were more important than the model formulation and that both models were useful in evaluating the limitations and uncertainties of the measurements. Received November 1, 1999 Revised April 20, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号