首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Changes in patterns of undetectability and molar ratios of dissolved nutrients in the euphotic zone of the oligotrophic western North Atlantic Ocean were investigated utilizing the Bermuda Atlantic Time-series Study (BATS) data set of the US Joint Global Ocean Flux Study (JGOFS). Our aim was to examine the temporal dynamics of nutrient stocks over a decade (1989∼1998) and to gain insight into the interactions between the different biotic and abiotic factors underlying BATS. Patterns of nutrient undetectability clearly revealed the depleted nature of the nutrients in surface water at the BATS location, particularly phosphorous. The N:P ratio was consistently far above the nominal Redfield ratio (mean, 38.5) but was significantly lower during the 1993∼1994 period (22.1). Over the same period the proportion of samples depleted in N only increased while the proportion of samples depleted in P only decreased. This indicates an overall reduction of N relative to P in the surface water at BATS during the 1993∼1994 period, the reasons for this anomaly, though, are not clear. The correlation analysis between the biotic and abiotic variables at BATS has indicated some interesting relationships that can help understand some of the parameters affecting nutrient stocks in the euphotic zone and their consequent impacts on marine biota. Although nutrient stocks in the oligotrophic environment are limited, they might be subject to interannual variation that may become anomalous in some cases. These variations might underlay significant feedback mechanisms by affecting marine productivity, the prime factor controlling the sequestration of atmospheric CO2 by the oceans. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Surface drift in the South-East Atlantic Ocean is described using historical shipdrift data. The Benguela Current has a width of 200 km in the south and 750 km in the north. The mean speeds of the current vary from <11 cm·s?1 to a maximum of 23 cm·s?1 The highest current speeds occur during summer in the southern regions and during winter in the northern regions, and this seasonality corresponds well with seasonal wind speeds. Eddy kinetic energy is enhanced in the Subtropical Convergence zone and is highest in the general vicinity of the Agulhas Current retroflection. The Subtropical Convergence is evident as a line where northward Ekman drift terminates.  相似文献   

3.
Izvestiya, Atmospheric and Oceanic Physics - Estimates of the meridional mass transport of Antarctic Bottom Water, calculated using the coupled ocean-atmosphere Earth System Model on the basis of...  相似文献   

4.
Bubnova  E. S.  Kapustina  M. V.  Krechik  V. A.  Sivkov  V. V. 《Oceanology》2020,60(2):228-235
Oceanology - Abstract—The research is dedicated to the suspended particulate matter (SPM) distribution and the hydrological–hydrochemical conditions within the oceanic upwelling of the...  相似文献   

5.
A combination of 2-year-long mooring-based measurements and snapshot conductivity–temperature–depth (CTD) observations at the continental slope off Spitsbergen (81°30′N, 31°00′E) is used to demonstrate a significant hydrographic seasonal signal in Atlantic Water (AW) that propagates along the Eurasian continental slope in the Arctic Ocean. At the mooring position this seasonal signal dominates, contributing up to 50% of the total variance. Annual temperature maximum in the upper ocean (above 215 m) is reached in mid-November, when the ocean in the area is normally covered by ice. Distinct division into ‘summer’ (warmer and saltier) and ‘winter’ (colder and fresher) AW types is revealed there. Estimated temperature difference between the ‘summer’ and ‘winter’ waters is 1.2 °C, which implies that the range of seasonal heat content variations is of the same order of magnitude as the mean local AW heat content, suggesting an important role of seasonal changes in the intensity of the upward heat flux from AW. Although the current meter observations are only 1-year long, they hint at a persistent, highly barotropic current with little or no seasonal signal attached.  相似文献   

6.
The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996. Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5°S and 11°S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28°S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s-1. At the Brazil–Falkland Current Confluence Zone, a cyclonic eddy near 40°S 50°W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions.  相似文献   

7.
邱云  胡建宇 《海洋通报》2005,24(4):8-16,72
利用1993年4月至2001年3月的TOPEX/POSEIDON卫星高度计遥感资料,研究了热带大西洋(15°S-25°N,50°W-5°W)海面高度距平和表层环流结构的季节性变化。研究结果表明:夏季和冬季海面高度距平分布呈相反的结构,低纬度海区(0°-15°N之间的海区)海表风应力旋度所产生的Ekman抽吸而导致的海面升降是该海区海面高度距平季节性振荡的重要影响因素。热带大西洋表层流结构大部分海域季节变化不明显,部分流系具有明显季节振荡,东向的北赤道逆流夏季强度较大,冬、春季流速较小;非洲沿岸流冬季流向为东南向,其他季节流向为东北向。值得一提的是,几内亚海湾表层流秋、冬季为东向,而春、夏季为西向。通过卫星跟踪ARGOS漂流浮标观测结果进行的对比验证表明,上述遥感资料分析的表层地转流场与海上观测结果一致。  相似文献   

8.
This study presents an analysis of the CTD data and the turbulent microstructure data collected in 2014, the turbulent mixing environment above the Atlantic Water(AW) around the Chukchi Borderland region is studied.Surface wind becomes more efficient in driving the upper ocean movement along with the rapid decline of sea ice,thus results in a more restless interior of the Arctic Ocean. The turbulent dissipation rate is in the range of4.60×10~(–10)~(–3.31×10~(–9) W/kg with a mean value of 1.33×10~(–9) W/kg, while the diapycnal diffusivity is in the range of1.45×10~(–6)–1.46×10~(–5)m~2/s with a mean value of 4.84×10~(–6) m~2/s in 200–300 m(above the AW). After investigating on the traditional factors(i.e., wind, topography and tides) that may contribute to the turbulent dissipation rate, the results show that the tidal kinetic energy plays a dominating role in the vertical mixing above the AW. Besides, the swing of the Beaufort Gyre(BG) has an impact on the vertical shear of the geostrophic current and may contribute to the regional difference of turbulent mixing. The parameterized method for the double-diffusive convection flux above the AW is validated by the direct turbulent microstructure results.  相似文献   

9.
The distribution of the colour index is considered in the region bounded by 8–11°N and 13°30–18°30W based on the results of measurements made on board vessels of the Marine Hydrophysical Institute of the Ukrainian SSR Academy of Sciences (MHI) in 1977–1985. Mean values and statistical characteristics are calculated for the colour index variability over one-degree squares. A map of its multi-yearly average distribution is plotted.Translated by M. M. Trufanov.  相似文献   

10.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号