共查询到20条相似文献,搜索用时 15 毫秒
1.
A western North Pacific tropical cyclone (TC) intensity prediction scheme (WIPS) is developed based on TC samples from 1996
to 2002 using the stepwise regression technique, with the western North Pacific divided into three sub-regions: the region
near the coast of East China (ECR), the South China Sea region (SCR), and the far oceanic region (FOR). Only the TCs with
maximum sustained surface wind speed greater than 17.2 m s−1 are used in the scheme. Potential predictors include the climatology and persistence factors, synoptic environmental conditions,
potential intensity of a TC and proximity of a TC to land. Variances explained by the selected predictors suggest that the
potential intensity of a TC and the proximity of a TC to land are significant in almost all the forecast equations. Other
important predictors include vertical wind shear in ECR, 500-hPa geopotential height anomaly at the TC center, zonal component
of TC translation speed in SCR, intensity change of TC 12 or 24 h prior to initial time, and the longitude of TC center in
FOR. 相似文献
2.
热带气旋结构和强度变化研究进展 总被引:2,自引:0,他引:2
热带气旋结构和强度变化的物理过程和影响因子十分复杂,其登陆过程中海-陆-气三者之间的复杂作用常使其结构和强度发生突变,给热带气旋预报带来较大困难。近年来外场科学试验及数值模拟等科学方法都取得较大改进,在此基础上对热带气旋结构和强度研究取得了新的进展,如热带气旋强度突变及不同下垫面对热带气旋强度变化的影响等。但对热带气旋非对称结构对其强度的影响及热带气旋内部结构变化与其强度之间的联系等问题的研究仍不全面。本文通过查阅国内外相关研究文献,从环境气流、下垫面及内部结构3个主要方面,总结影响热带气旋结构和强度变化的主要因子,以期为改进热带气旋结构和强度的预报方法提供有意义的理论依据。 相似文献
3.
4.
准确估算热带气旋(TC)强度,对于预测TC发展、减少财产损失具有重要的意义。前人将TC看作满足静力平衡和梯度风平衡的轴对称涡旋系统,基于云顶高度、云顶温度、海表面气压等物理量建立了TC强度估算模型,该模型未考虑环境垂直风切变对TC强度的影响。本文提出一种修正模型,通过统计拟合手段将垂直风切变加入原模型中。从2006—2015年的Cloud Sat资料中筛选出穿心个例共63个。针对云雷达(CPR)数据特点,提出根据反射率因子的垂直分布确定眼墙和外围边界位置的方法。分别用原模型与修正模型对这63个TC个例进行强度估算。与最佳路径数据相比,原模型结果总体偏大,尤其对风切变较大、强度较小的个例估算效果不佳。修正模型对于风切变大于5 m·s~(-1)的个例误差明显减小,平均绝对误差MAE、均方根误差RMSE和平均绝对误差百分比MAPE分别从5.8 m·s~(-1)、7.7 m·s~(-1)和19.5%变为3.5 m·s~(-1)、4.9 m·s~(-1)和11.5%。在一定强度范围内,修正模型估算效果随着强度的增强而提升。修正模型对于成熟阶段的个例效果更好,北半球的估算精度高于南半球,纬度越高,估算误差越小。试验结果表明,用该修正模型估算TC强度是可行的,可以对现有的技术进行辅助和补充。 相似文献
5.
Summary The National Hurricane Center and Joint Typhoon Warning Center operational tropical cyclone intensity forecasts for the three
major northern hemisphere tropical cyclone basins (Atlantic, eastern North Pacific, and western North Pacific) for the past
two decades are examined for long-term trends. Results show that there has been some marginal improvement in the mean absolute
error at 24 and 48 h for the Atlantic and at 72 h for the east and west Pacific. A new metric that measures the percent variance
of the observed intensity changes that is reduced by the forecast (variance reduction, VR) is defined to help account for
inter-annual variability in forecast difficulty. Results show that there have been significant improvements in the VR of the
official forecasts in the Atlantic, and some marginal improvement in the other two basins. The VR of the intensity guidance
models was also examined. The improvement in the VR is due to the implementation of advanced statistical intensity prediction
models and the operational version of the GFDL hurricane model in the mid-1990s. The skill of the operational intensity forecasts
for the 5-year period ending in 2005 was determined by comparing the errors to those from simple statistical models with input
from climatology and persistence. The intensity forecasts had significant skill out to 96 h in the Atlantic and out to 72 h
in the east and west Pacific. The intensity forecasts are also compared to the operational track forecasts. The skill was
comparable at 12 h, but the track forecasts were 2 to 5 times more skillful by 72 h. The track and intensity forecast error
trends for the two-decade period were also compared. Results showed that the percentage track forecast improvement was almost
an order of magnitude larger than that for intensity, indicating that intensity forecasting still has much room for improvement. 相似文献
6.
本文从动力-热力学方程出发。得到反映热带气旋强度变化的参数和几个物理因子.然后对这些因子和热带气旋强度变化之间的关系用统计方法进行处理,得到热带气旋强度变化的预报方程.124个历史样本的拟合结果和1981年台风的试报情况表明,线性模型的预报方程具有一定的预报能力. 相似文献
7.
Summary Errors produced by a nonlinear predictive scheme contain information about both the observations and the prediction system.
Therefore, its error history would be expected to contribute to increasing the skill of the predictions if it is included
in the forecast. In this study an error recycling procedure is developed for tropical cyclone track prediction. Errors are
defined here as differences between the model forecast and the best track position. Error histories are incorporated into
a nonlinear analogue, or simplex, forecast scheme and applied to tropical cyclone track prediction, using the archives of
observed position data associated with the forecast errors. Various forecast experiments of the cyclone tracks are performed:
standard simplex predictions using observed positions only; simplex predictions improved by error forecasts based on libraries
of both observations and the recycled forecast errors; and, finally, predictions that include NWP-model forecasts and their
errors as predictors. The resulting gains in skill of predictions out to 72 hours ahead are found to be substantial.
Received August 12, 1999 Revised November 5, 1999 相似文献
8.
9.
主分量分析在热带气旋强度客观预报中的试用 总被引:3,自引:0,他引:3
为了解主分量因子分析在热带气旋强度客观预报中的应用效能,在NCEP再分析资料、T106L19模式产品和热带气旋历史观测资料基础上,采用主分量因子分析技术,结合多元线性回归和BP型人工神经网络,开展了西北太平洋热带气旋的强度客观预报技术研究试验。试验包含完全预报法原理下的预报因子有无主分量分析、线性与非线性预报方法建模等方面的比较。结果表明,预报因子的主分量分析通过降低线性回归和BP人工神经网络模型的维数,提高因子间独立性,可减小模型强度预报平均绝对误差,提高模型实际预报能力。 相似文献
10.
In this paper the impacts of vertical resolution on the simulations of Typhoon Talim (2005) are examined using the Weather Research and Forecasting (WRF) model, with cumulus parameterization scheme representing the cumulus convection implicitly. It is shown that the tropical cyclone (TC) track has little sensitivity to vertical resolution, whereas the TC intensity and structure are highly sensitive to vertical resolution. It is partly determined by the sensitivity of the planetary boundary layer (and the surface layer) and the cumulus convection processes to vertical resolution. Increasing vertical resolution in the lower layer could strengthen the TC effectively. Increasing vertical resolution in the upper layer is also beneficial for the storm intensification, but to a lesser degree. In contrast, improving the midlevel resolution may cause the convergence of environmental air, which inhibits the TC intensification. The results also show that the impacts of vertical resolution on features of the TC structure, such as the tangential winds, secondary circulations and the evolution of the warm-core structure, are consistent with the impacts on the TC intensity. It is suggested that in the simulations of TCs, the vertical levels should be distributed properly rather than the more the better, with higher vertical resolution being expected both in the lower and upper layer, while the middle layer should not hold too many levels. 相似文献
11.
利用2007—2009年热带降雨测量卫星(TRMM)的微波成像仪(TMI)观测到的亮温资料,计算9个通道(10、19、37、85 GHz的水平和垂直极化通道及21 GHz的垂直极化通道)的亮温和极化修正温度(PCT)在不同范围内的最大值、最小值、平均值和区域阈值与热带气旋强度之间的关系。结果表明:亮温信息可较好地反映热带气旋的强度,单个参数与热带气旋最大风速的相关性最好可达到0.83,线性拟合的均方根误差接近业务误差;低频通道的亮温相对于高频通道可更好地估计海上热带气旋强度;位于台风中心0.5°~1.5°度范围之间的亮温与气旋强度的相关性较好,圆形区域的相关性好于圆环区域;对于位于海上的热带气旋,区域亮温的最小值与热带气旋强度的关系最好;低频通道(除10 GHz外),阈值位于260~280 K区间的亮温与热带气旋强度的相关性较好。 相似文献
12.
Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30?years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30?years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs. 相似文献
13.
热带地区大气的热力学状态对台风的发展起着重要作用.本项研究结果表明,东太平洋台风强度与沙尘AOD之间存在一定的负相关.同时,MERRA-2再分析数据和CMIP6的GCM模拟的分析结果,都表明了低层大气中云对沙尘AOD的负响应.沙尘颗粒物的准直接辐射效应可以解释上述响应:沙尘颗粒物吸收太阳辐射,并用此热量促进云层蒸发.理... 相似文献
14.
在获取关岛联合台风警报中心(JTWC)以及中国气象局《台风年鉴》和《热带气旋年鉴》自1949—2004年西北太平洋热带气旋强度(近中心最大风力)资料的基础上,着重比较了两者在时间变化上的差异,结果显示:热带风暴以上近56 a所有样本的平均风速前者小于后者0.81 m.s-1,而这一差异主要的贡献是强台风以上样本。两资料集最显著的特征是热带风暴以上年平均风速随时间变化的差异上,自1970s中期到1990s中期,两者的走势趋向呈相反的态势,前者呈上升趋势,后者呈下降趋势,特别是强台风以上样本表现更为突出。利用资料相对稳定性原则,对JTWC和《台风年鉴》资料进行校正,1990s以来JTWC估计的热带气旋强度可能偏大,1970s之前《台风年鉴》估计的数值也可能偏大。 相似文献
15.
Brightness temperature anomalies measured by the Advanced Microwave Sounding Unit (AMSU) on the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting series are suited to estimate tropical cyclone (TC) intensity by virtue of their ability to assess changes in tropospheric warm core struc-ture in the presence of clouds. Analysis of the measurements from different satellites shows that the variable horizontal resolution of the instrument has significant effects on the observed brightness temperature anoma-lies. With the aim to decrease these effects on TC intensity estimation more easily and effectively, a new simple correction algorithm, which is related to the product of the brightness temperature gradient near the TC center and the size of the field-of-view (FOV) observing the TC center, is proposed to modify the observed anomalies. Without other measurements, the comparison shows that the performance of the new algorithm is better than that of the traditional, physically-based algorithm. Furthermore, based on the correction algorithm, a new scheme, in which the brightness temperature anomalies at 31.4 GHz and 89 GHz accounting for precipitation effects are directly used as the predictors with those at 54.94 GHz and 55.5 GHz, is developed to estimate TC intensity in the western North Pacific basin. The collocated AMSU-A observations from NOAA-16 with the best track (BT) intensity data from the Japan Meteorological Agency (JMA) in 2002-2003 and in 2004 are used respectively to develop and validate regression coefficients. For the independent validation dataset, the scheme yields 8.4 hPa of the root mean square error and 6.6 hPa of the mean absolute error. For the 81 collocated cases in the western North Pacific basin and for the 24 collocated cases in the Atlantic basin, compared to the BT data, the standard deviations of the estimation differences of the results are 15% and 11% less than those of the CIMSS (Cooperative Institute for Meteorological Satellite Studies, Univ 相似文献
16.
A western North Pacific tropical cyclone (TC) intensity prediction scheme has been developed based on climatology and persistence (CLIPER) factors as potential predictors and using genetic neural network (GNN) model. TC samples during June–October spanning 2001–2010 are used for model development. The GNN model input is constructed from potential predictors by employing both a stepwise regression method and an Isometric Mapping (Isomap) algorithm. The Isomap algorithm is capable of finding meaningful low-dimensional architectures hidden in their nonlinear high-dimensional data space and separating the underlying factors. In this scheme, the new developed model, which is termed the GNN-Isomap model, is used for monthly TC intensity prediction at 24- and 48-h lead times. Using identical modeling samples and independent samples, predictions of the GNN-Isomap model are compared with the widely used CLIPER method. By adopting different numbers of nearest neighbors, results of sensitivity experiments show that the mean absolute prediction errors of the independent samples using GNN-Isomap model at 24- and 48-h forecasts are smaller than those using CLIPER method. Positive skills are obtained as compared to the CLIPER method with being above 12 % at 24 h and above 14 % at 48 h. Analyses of the new scheme suggest that the useful linear and nonlinear prediction information of the full pool of potential predictors is excavated in terms of the stepwise regression method and the Isomap algorithm. Moreover, the GNN is built by integrating multiple individual neural networks with the same expected output and network architecture is optimized by an evolutionary genetic algorithm, so the generalization capacity of the GNN-Isomap model is significantly enhanced, indicating a potentially better operational weather prediction. 相似文献
17.
18.
Summary Current understanding of tropical cyclone (TC) structure and intensity changes has been reviewed in this article. Recent studies in this area tend to focus on two issues: (1) what factors determine the maximum potential intensity (MPI) that a TC can achieve given the thermodynamic state of the atmosphere and the ocean? and (2) what factors prevent the TCs from reaching their MPIs? Although the MPI theories appear mature, recent studies of the so-called superintensity pose a potential challenge. It is notable that the maximum intensities reached by real TCs in all ocean basins are generally lower than those inferred from the theoretical MPI, indicating that internal dynamics and external forcing from environmental flow prohibit the TC intensification most and limit the TC intensity. It remains to be seen whether such factors can be included in improved MPI approaches.Among many limiting factors, the unfavorable environmental conditions, especially the vertical shear-induced asymmetry in the inner core region and the cooling of sea surface due to the oceanic upwelling under the eyewall region, have been postulated as the primary impediment to a TC reaching its MPI. However, recent studies show that the mesoscale processes, which create asymmetries in the TC core region, play key roles in TC structure and intensity changes. These include the inner and outer spiral rainbands, convectively coupled vortex Rossby waves, eyewall cycles, and embedded mesovortices in TC circulation. It is also through these inner core processes that the external environmental flow affects the TC structure and intensity changes. It is proposed that future research be focused on improving the understanding of how the eyewall processes respond to all external forcing and affect the TC structure and intensity changes. Rapid TC intensity changes (both strengthening and weakening) are believed to involve complex interactions between different scales and to be worthy of future research.The boundary-layer processes are crucial to TC formation, maintenance, and decaying. Significant progress has been made to deduce the drag coefficient on high wind conditions from the measurements of boundary layer winds in the vicinity of hurricane eyewalls by Global Positioning System (GPS) dropsondes. This breakthrough can lead to reduction of the uncertainties in the calculation of surface fluxes, thus improving TC intensity forecast by numerical weather prediction models. 相似文献
19.
非静力模式预报热带气旋路径个例试验 总被引:3,自引:0,他引:3
利用非静力模式(MM5V2)对9611号、9904号等北上热带气旋路径预报进行民试验。用松驰(Nudging)四维同化方案和人造热带气旋(Bogus TC)技术,使独t-12时刻的模式场(包括第一个Bogus TC)通过预积分逐步逼近to时刻的Bogus TC和同时刻的观测资料场庆1999年能够得到相隔6h一次的AT106L19预报场后,分别在t-12、t-a6和to时刻各制做一个Bogus TC 相似文献
20.
Russell L. Elsberry Hsiao-Chung Tsai 《Asia-Pacific Journal of Atmospheric Sciences》2014,50(3):297-306
A situation-dependent intensity prediction (SDIP) technique is developed for western North Pacific tropical cyclones that is based on the average of the intensity changes from the 10 best historical track analogs to the Joint Typhoon Warning Center best-tracks. The selection of the 10 best track analogs is also conditioned on the current intensity, and it is demonstrated that for a subsample of current intensities less than or equal to 35 kt the intensity mean absolute errors (MAEs) and biases are smaller than for the greater than 35 kt intensity subsample. The SDIP is demonstrated to have advantages as an intensity skill measure at forecast intervals beyond 36 h compared to the current climatology and persistence technique that uses only variables available at the initial time. The SDIP has significantly smaller intensity MAEs beyond 36 h with an almost 20% reduction at 120 h, has significantly smaller intensity biases than the present skill metric beyond 12 h, and explains 36% of the intensity variability at 120 h compared to 20% explained variance for the current technique. The probability distributions of intensities at 72 h and 120 h predicted by the SDIP are also a better match of the distribution of the verifying observations. Intensity spread guidance each 12 h to 120 h is developed from the intensity spread among the 10 best historical track analogs. The intensity spread is calibrated to ensure that the SDIP forecasts will have a probability of detection (PoD) of at least 68.26%. While this calibrated intensity spread is specifically for the SDIP technique, it would provide a first-order spread guidance for the PoD for the official intensity forecast, which would be useful intensity uncertainty information for forecasters and decision-makers. 相似文献