首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tropical cyclone (TC) activity in the western North Pacific (WNP) has changed interdecadally with an approximately 20-year period between 1951 and 1999. The cause and mechanism of interdecadal variability of TC frequency in the WNP is investigated using NCEP/NCAR reanalysis and the result obtained from a high-resolution coupled general circulation model (CGCM). The interdecadal variability of TC activity in the WNP correlates with long-term variations in sea surface temperatures (SSTs) in the tropical central Pacific and with those of westerly wind anomalies associated with the monsoon trough that appears over the tropical WNP during the typhoon season of July to October. The westerly wind anomalies at near 10°N show positive feedback with the SST anomalies in the central Pacific. Therefore, the interdecadal variability of TC frequency is related to long-term variations in atmosphere–ocean coupling phenomena in the tropical North Pacific. A 50-year long-run simulation using the high-resolution CGCM showed the robustness of interdecadal variability of TC frequency.  相似文献   

2.
A high-resolution (T213) coupled ocean–atmosphere general circulation model (CGCM) has been used to examine the relationship between El Niño/Southern Oscillation (ENSO) and tropical cyclone (TC) activity over the western North Pacific (WNP). The model simulates ENSO-like events similar to those observed, though the amplitude of the simulated Niño34 sea surface temperature (SST) anomaly is twice as large as observed. In El Niño (La Niña) years, the annual number of model TCs in the southeast quadrant of the WNP increases (decreases), while it decreases (increases) in the northwest quadrant. In spite of the significant difference in the mean genesis location of model TCs between El Niño and La Niña years, however, there is no significant simultaneous correlation between the annual number of model TCs over the entire WNP and model Niño34 SST anomalies. The annual number of model TCs, however, tends to decrease in the years following El Niño, relating to the development of anticyclonic circulation around the Philippine Sea in response to the SST anomalies in the central and eastern equatorial Pacific. Furthermore, it seems that the number of model TCs tends to increase in the years before El Niño. It is also shown that the number of TCs moving into the East Asia is fewer in October of El Niño years than La Niña years, related to the anomalous southward shift of mid-latitude westerlies, though no impact of ENSO on TC tracks is found in other months. It is found that model TCs have longer lifetimes due to the southeastward shift of mean TC genesis location in El Niño years than in La Niña years. As the result of longer fetch of TCs over warm SST, model TCs appear to be more intense in El Niño years. These relationships between ENSO and TC activity in the WNP are in good agreement with observational evidence, suggesting that a finer-resolution CGCM may become a powerful tool for understanding interannual variability of TC activity.  相似文献   

3.
Tropical Cyclone (TC) tracks over the western North Pacific (WNP) during 1949–2007, obtained from China Meteorological Administration/Shanghai Typhoon institute, are classified into three track types. These types are the main pathways by which TCs influence the coast of East Asia. The relationships between local sea surface temperature (SST) in WNP and TC tracks are revealed. Results show that the local SST plays an important role in TC tracks, though the relationships between local SST and the frequencies ...  相似文献   

4.
The contribution of tropical cyclones(TCs)to the East Asia–Pacific(EAP)teleconnection pattern during summer was investigated using the best track data of the Joint Typhoon Warning Center and NCEP-2 reanalysis datasets from 1979 to2018.The results showed that the TCs over the western North Pacific(WNP)correspond to a strengthened EAP pattern:During the summers of strong convection over the tropical WNP,TC days correspond to a stronger cyclonic circulation anomaly over the WNP in the lower troposphere,an enhanced seesaw pattern of negative and positive geopotential height anomalies over the subtropical WNP and midlatitude East Asia in the middle troposphere,and a more northward shift of the East Asian westerly jet in the upper troposphere.Further analyses indicated that two types of TCs with distinctly different tracks,i.e.,westward-moving TCs and northward-moving TCs,both favor the EAP pattern.The present results imply that TCs over the WNP,as extreme weather,can contribute significantly to summer-mean climate anomalies over the WNP and East Asia.  相似文献   

5.
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.  相似文献   

6.
In this study, the anomalous characteristics of observed large-scale synoptic fields in the extreme East Asian summer monsoon (EASM) years are analyzed, and the impact of the local sea surface temperature (SST) anomaly over the western North Pacific (WNP) on the extreme EASM is investigated through sensitivity experiments of 28?years EASM simulations to the local SST over the WNP. The observation analysis reveals that the extreme EASM is influenced more by anomalous large-scale atmospheric features such as monsoon circulations and the western North Pacific subtropical high than the local SST anomaly over the WNP. However, the results of the sensitivity experiments show that the local SST anomaly has an implicit impact on the extreme EASM. The patterns of differences in precipitation between the experiment forced by observed SST in each year and the experiment forced by climatological SST over the WNP are opposite to anomaly patterns of observed precipitation in the extreme EASM years. This is because the SST anomaly over the WNP plays a role in reducing precipitation anomaly by changing surface latent heat flux and monsoon circulations. In particular, the local SST anomaly over the WNP decreases anomalies of large-scale circulations, i.e., the local Hadley and the Walker circulations. Thus, the local SST anomaly over the WNP plays a role in decreasing the interannual variability of the EASM.  相似文献   

7.
评估了耦合气候系统模式FGOALS海洋同化试验对西北太平洋夏季降水和SST相关关系的模拟技巧,并对比了相应的观测海温强迫试验(AMIP)和历史气候模拟试验结果。结果显示,FGOALS海洋同化试验对亚洲季风区大部分海域夏季SST年际变化有较高的模拟技巧,但其对菲律宾以东海域模拟技巧较低。在西北太平洋夏季降水-SST相关关系方面,同化试验部分地再现了南海和菲律宾以东海域降水超前SST变化1个月和同时二者的负相关关系,优于AMIP试验但逊于自由耦合模拟试验。同化试验对SST倾向-降水相关关系的模拟技巧亦介于AMIP试验和自由耦合试验之间。观测中,西北太平洋夏季降水与环流异常受日界线附近和赤道东印度洋海洋大陆地区海温异常的遥强迫,并通过改变到达海表的净短波辐射通量影响局地SST异常,导致局地海温-降水和局地海温倾向-降水的负相关关系。在AMIP试验中,遥强迫导致的西北太平洋地区环流异常较之观测偏弱,由于缺少局地海气耦合过程,在西北太平洋多数地区表现为海温对大气的强迫作用,即SST-降水正相关关系。FGOALS同化试验和自由耦合试验考虑了局地海气耦合过程,虽然低估了遥强迫对西北太平洋地区夏季环流异常的影响,依然部分模拟出局地降水-SST负相关关系但较之观测偏弱。同时,自由耦合试验高估了西北太平洋20°N以南地区海温异常对大气环流异常的强迫,使得其对中国南海和日本岛以南海域SST-降水负相关关系的模拟稍优于同化试验。  相似文献   

8.
根据西北太平洋编号台风资料、Hadley中心的SST资料和NCAR/NCEP的再分析资料,对2006年西北太平洋热带气旋活动特点进行分析,就台风季热带气旋的活动特征和成因进行研究。(1) 海表温度的异常引起的沃克环流异常造成了2006年热带气旋频数相对于多年平均偏少。(2) 越赤道气流强并且有较好对流匹配的区域易生成热带气旋。较强的对流运动,良好的越赤道气流、环流条件和切变条件的匹配是2006年8月较其它月份生成较多热带气旋的原因。(3) 异常东南风环流有利于引导生成的热带气旋以西北路径西行进入我国沿海并登陆。异常西风环流不利于热带气旋向西运动登陆我国。(4) 垂直风切变异常太大,不利于气旋生成和发展。  相似文献   

9.
Recent studies found that in the context of global warming, the observed tropical cyclones (TCs) exhibit significant poleward migration trend in terms of the mean latitude where TCs reach their lifetime-maximum intensity in the western North Pacific (WNP). This poleward migration of TC tracks can be attributed to not only anthropogenic forcing (e.g., continuous increase of sea surface temperature (SST)), but also impacts of other factors (e.g., natural variability). In the present study, to eliminate the impacts of other factors and thus focus on the impact of unvaried SST on climatological WNP TC tracks, the mesoscale Weather Research and Forecasting (WRF) model is used to conduct a suite of idealized sensitivity experiments with increased SST. Comparisons among the results of these experiments show the possible changes in climatological TC track, TC track density, and types of TC track in the context of SST increase. The results demonstrate that under the warmer SST conditions, the climatological mean TC track systematically shifts poleward significantly in the WNP, which is consistent with the previous studies. Meanwhile, the ocean warming also leads to the decreased (increased) destructive potential of TCs in low (middle) latitudes, and thus northward migration of the region where TCs have the largest impact. Further results imply the possibility that under the ocean warming, the percentage of TCs with westward/northwestward tracks decreases/increases distinctly.  相似文献   

10.
根据热带西太平洋(130°-160°E,10°-20°N)上空对流的年际变化,对表面温度、向外长波幅射、850 hPa纬向风进行了合成分析。合成分析结果表明,热带西太平洋上空的弱(强)对流对应着前冬和春季厄尔尼诺(拉尼娜)型的海温异常。与以前的研究结果进行了比较,说明上述海温异常的时空分布也与热带西太平洋和南海季风的爆发早晚相关联。合成分析结果还表明,热带西太平洋上空的弱(强)对流对应着从热带西太平洋向西伸展到盂加拉湾的东风(西风)异常。数值模拟也得到类似的结果。此外,在对流弱(强)的夏季,热带西太平洋上空的对流和南海低层纬向风均表现出弱(强)的季节演变特征。  相似文献   

11.
2010年西北太平洋与南海热带气旋活动异常的成因分析   总被引:1,自引:0,他引:1  
利用中国气象局热带气旋(TC)资料、NCEP/NCAR 再分析资料和美国 NOAA 向外长波辐射(OLR)等资料,分析了2010年西北太平洋(WNP)及南海(SCS)热带气旋活动异常的可能成因,讨论了同期大气环流配置和海温外强迫对TC生成和登陆的动力和热力条件的影响。结果表明,2010年生成TC频数明显偏少,生成源地显著偏西,而登陆TC频数与常年持平。导致7~10月TC频数明显偏少的大尺度环境场特征为:副热带高压较常年异常偏强、西伸脊点偏西,季风槽位置异常偏西,弱垂直风切变带位置也较常年偏西且范围偏小,南亚高压异常偏强,贝加尔湖附近对流层低高层均为反气旋距平环流,这些关键环流因子的特征和配置都不利于 TC 在WNP的东部生成。影响TC活动的外强迫场特征为:2010年热带太平洋经历了El Ni?o事件于春末夏初消亡、La Ni?a事件于7月形成的转换;7~10月,WNP海表温度维持正距平,140°E以东为负距平且对流活动受到抑制;暖池次表层海温异常偏暖,对应上空850 hPa为东风距平,有利于季风槽偏西和TC在WNP的西北侧海域生成。WNP海表温度和暖池次表层海温的特征是2010年TC生成频数偏少、生成源地异常偏西的重要外强迫信号。有利于7~10月热带气旋西行和登陆的500 hPa风场特征为:北太平洋为反气旋环流距平,其南侧为东风异常,该东风异常南缘可到25°N,并向西扩展至中国大陆地区;南海和西北太平洋地区15°N以南的低纬也为东风异常;在这样的风场分布型下,TC容易受偏东气流引导西行并登陆我国沿海地区。这是2010年生成TC偏少但登陆TC并不少的重要环流条件。  相似文献   

12.
Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.  相似文献   

13.
The paper examines different impacts of eastern Pacific warm/cold (EPW/EPC) and central Pacific warm/cold (CPW/CPC) events on tropical cyclones (TCs) in the western North Pacific (WNP) by considering the early season of April–June (AMJ), the peak season of July–September (JAS) and the late season of October–December (OND). During AMJ, EPW (EPC) is associated with a significant increase of the TC genesis number in the southeastern (southwestern) sub-region of the WNP, but no class of El Niño-Southern Oscillation (ENSO) events shows a significant change in the TC lifetime and intensity. During JAS, EPW corresponds to an increase (decrease) of the TC genesis number in the southeastern (northwestern) sub-region, but CPW shows no significant change. EPC increases the TC genesis in the northwestern and northeastern sub-regions and decreases the genesis in the southwestern sub-region, whereas CPC suppresses the genesis in the southeastern sub-region. Both the lifetime and intensity of TCs are increased in EPW, but only a shortened lifetime is seen for CPC. During OND, EPW reduces the TC genesis in the southwestern and northwestern sub-regions, whereas CPW enhances the genesis in the southeastern sub-region. Over the South China Sea, CPW and CPC show a significant decrease and increase of the TC genesis, respectively. The TC lifetime is significantly longer in both EPW and CPW and shorter in EPC, and TCs tend to be more (less) intense in EPW (CPC). All of these variations are consistent with the development of ENSO-related SST anomalies during different seasons and are supported by distributions of the genesis potential index—a combination of large-scale oceanic and atmospheric factors that affect TC activity. TCs in the WNP mainly take the straight westward, northwestward and recurving tracks. During AMJ of EPW years, the TC steering flow patterns favor the recurving track and suppress the straight westward and northwestward tracks. During JAS, EPW is associated with the steering flows that are unfavorable for TCs to move northwestward or westward, whereas CPW favors the northwestward track and suppresses the straight westward track. The steering flow patterns during OND are similar to those during JAS, except that EPC may increase the possibility of the northwestward track.  相似文献   

14.
Chao He  Tianjun Zhou 《Climate Dynamics》2014,43(9-10):2455-2469
Using the output of the Atmospheric Model Intercomparison Project (AMIP) experiments of 28 models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), the models’ performances in the simulation of the two dominant interannual variability modes of the Western North Pacific Subtropical High (WNPSH) are investigated. In the observation, the positive phases of these two modes feature an anomalous anticyclone over the western North Pacific (WNP), but the first mode (M1) is closely connected with the sea surface temperature (SST) anomalies over the tropical Indian Ocean (TIO), the maritime continent (MC) and the equatorial central Pacific (CP), while the second mode (M2) is closely connected with the SST anomalies over the WNP. The M1 is well captured by the CMIP5–AMIP models forced by the historical SST, suggesting the M1 is an SST-forced mode. The CMIP5–AMIP models capture the close relationship of the M1 with the SST anomalies over the TIO, the MC and the CP. The forcing mechanisms of M1 in the CMIP5–AMIP models are consistent with the observation, including a Kelvin wave emanating from the TIO and a local Hadley circulation originating from the MC. Different from the high reproducibility of the M1, the M2 is only moderately reproduced by the multi-model ensemble (MME) mean of the CMIP5–AMIP models. The simulated anomalous WNPSH of the M2 is weaker and shifts southwestward in the MME and many individual models compared to the observation. Among the five anomalous WNPSH years associated with the M2, the MME captures the anomalous WNPSH only in 1993 and 1994 but not in 1980, 1981 and 1987. The partial reproducibility of the M2 by the CMIP5–AMIP models suggests the M2 is neither a pure atmospheric internal mode nor a pure SST-forced mode. The observed close relationship between the anomalous WNPSH and the WNP SST anomalies is underestimated by the CMIP5–AMIP models, suggesting the local SST–WNPSH relationship may depend on the air–sea interaction over the WNP.  相似文献   

15.
Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identified to be the factors that contribute to the interannual variability of landfalling TCs.El Ni o Modoki years are associated with a greater-than-average frequency of landfalling TCs in China,but reversed in canonical El Ni o years.Significant difference in genesis locations of landfalling TCs in China for the two kinds of El Ni o phases occurs dominantly in the northern tropical western North Pacific(WNP).The patterns of low-level circulation anomalies and outgoing longwave radiation(OLR) anomalies associated with landfalling TC genesis with different types of El Ni o phases are examined.During canonical El Ni o years,a broad zonal band of positive OLR anomalies dominates the tropical WNP,while the circulation anomalies exhibit a meridionally symmetrical dipole pattern with an anticyclonic anomaly in the subtropics and a cyclonic anomaly near the tropics.In El Ni o Modoki years,a vast region of negative OLR anomalies,roughly to the south of 25°N with a strong large-scale cyclonic anomaly over the tropical WNP,provides a more favorable condition for landfalling TC genesis compared to its counterpart during canonical El Ni o years.For more landfalling TCs formed in the northern tropical WNP in El Ni o Modoki years,there are more TCs making landfall on the northern coast of China in El Ni o Modoki years than in canonical El Ni o years.The number of landfalling TCs is slightly above normal in canonical La Ni a years.Enhanced convection is found in the South China Sea(SCS) and the west of the tropical WNP,which results in landfalling TCs forming more westward in canonical La Ni a years.During La Ni a Modoki years,the landfalling TC frequency are below normal,owing to an unfavorable condition for TC genesis persisting in a broad zonal band from 5°N to 25°N.Since the western North Pacific subtropical high(WNPSH) in La Ni a Modoki years is located in the westernmost region,TCs mainly make landfall on the south coast of China.  相似文献   

16.
The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated w  相似文献   

17.
利用1979—2012年西北太平洋热带气旋最佳路径资料,Hadley中心的海温资料和NCEP/NCAR再分析资料等,研究了夏季(6—10月)热带北大西洋海温异常与西北太平洋热带气旋(Tropical Cyclone,TC)生成的关系及其可能机制。结果表明,夏季热带北大西洋海温异常与同期西北太平洋TC生成频次之间存在显著的负相关关系。热带北大西洋海温的异常增暖可产生一对东—西向分布的偶极型低层异常环流,其中气旋性异常环流位于北大西洋/东太平洋地区,反气旋异常环流位于西北太平洋地区。该反气旋环流异常使得TC主要生成区的对流活动受到抑制、低层涡度正异常、中低层相对湿度负异常、中层下沉气流异常,这些动力/热力条件均不利于TC生成。此外,西北太平洋地区低层涡旋动能负异常,同时来自大尺度环流的涡旋动能的正压转换也受到抑制,不能为TC的生成和发展提供额外能量源。反之亦然。  相似文献   

18.
The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.  相似文献   

19.
Summary This paper reviews the interannual and interdecadal variations in tropical cyclone (TC) activity over the western North Pacific (WNP) and the possible physical mechanisms responsible for such variations. Interannual variations can largely be explained by changes in the planetary-scale flow patterns. Sea-surface temperatures (SSTs) in the WNP, however, do not contribute to such variations. Rather, SSTs in the central and eastern equatorial Pacific are significantly correlated with TC activity over the WNP. Causality can be established: changes in the SST in the equatorial Pacific are related to the El Niño/Southern Oscillation (ENSO) phenomenon, and modifications of the planetary-scale flow associated with ENSO alter the conditions over the WNP and hence TC activity there. Variations in annual TC activity are also associated with different phases of the stratospheric quasi-biennial oscillations due to its modification of the vertical wind shear of the environment in which TCs form. Interdecadal variations in TC activity are apparently related to the location, strength and extent of the North Pacific subtropical high. However, the mechanisms responsible for modifying these characteristics of the subtropical high have yet to be identified.  相似文献   

20.
Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months. This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer. The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years, while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer. The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer). The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere, which is proposed as a possible reason for southward displacement of the EAJS in June. The late spring-summer warm SST anomaly in the tropical eastern Pacific, however, may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号