首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

2.
In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16°N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to ??upper tropospheric warming effect?? predominates over the ??moisture build-up effect?? in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.  相似文献   

3.
Understanding the response of the global hydrological cycle to recent and future anthropogenic emissions of greenhouse gases and aerosols is a major challenge for the climate modelling community. Recent climate scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change are analysed here to explore the geographical origin of, and the possible reasons for, uncertainties in the hydrological model response to global warming. Using the twentieth century simulations and the SRES-A2 scenarios from eight different coupled ocean–atmosphere models, it is shown that the main uncertainties originate from the tropics, where even the sign of the zonal mean precipitation change remains uncertain over land. Given the large interannual fluctuations of tropical precipitation, it is then suggested that the El Niño Southern Ocillation (ENSO) variability can be used as a surrogate of climate change to better constrain the model reponse. While the simulated sensitivity of global land precipitation to global mean surface temperature indeed shows a remarkable similarity between the interannual and climate change timescales respectively, the model ability to capture the ENSO-precipitation relationship is not a major constraint on the global hydrological projections. Only the model that exhibits the highest precipitation sensitivity clearly appears as an outlier. Besides deficiencies in the simulation of the ENSO-tropical rainfall teleconnections, the study indicates that uncertainties in the twenty-first century evolution of these teleconnections represent an important contribution to the model spread, thus emphasizing the need for improving the simulation of the tropical Pacific variability to provide more reliable scenarios of the global hydrological cycle. It also suggests that validating the mean present-day climate is not sufficient to assess the reliability of climate projections, and that interannual variability is another suitable and possibly more useful candidate for constraining the model response. Finally, it is shown that uncertainties in precipitation change are, like precipitation itself, very unevenly distributed over the globe, the most vulnerable countries sometimes being those where the anticipated precipitation changes are the most uncertain.  相似文献   

4.
An approach to considering changes in flooding probability in the integrated assessment of climate change is introduced. A reduced-form hydrological model for flood prediction and a downscaling approach suitable for integrated assessment modeling are presented. Based on these components, the fraction of world population living in river basins affected by changes in flooding probability in the course of climate change is determined. This is then used as a climate impact response function in order to derive emission corridors limiting the population affected. This approach illustrates the consideration of probabilistic impacts within the framework of the tolerable windows approach. Based on the change in global mean temperature, as calculated by the simple climate models used in integrated assessment, spatially resolved changes in climatic variables are determined using pattern scaling, while natural variability in these variables is considered using twentieth century deviations from the climatology. Driven by the spatially resolved climate change, the hydrological model then aggregates these changes to river basin scale. The hydrological model is subjected to a sensitivity analysis with regard to the water balance, and the uncertainty arising through the different projections of changes in mean climate by differing climate models is considered by presenting results based on different models. The results suggest that up to 20% of world population live in river basins that might inevitably be affected by increased flood events in the course of global warming, depending on the climate model used to estimate the regional distribution of changes in climate. This article is dedicated to the memory of the late Gerhard Petschel-Held. He was an inspiring colleague, as well as a good friend. His sudden departure leaves me deeply shocked, and I am sure he will sorely be missed by all who had the pleasure of meeting him. Thomas Kleinen  相似文献   

5.
Europe and in particular its southern part are expected to undergo serious climate changes during summer in response to anthropogenic forcing, with large surface warming and decrease in precipitation. Yet, serious uncertainties remain, especially over central and western Europe. Several mechanisms have been suggested to be important in that context but their relative importance and possible interplays are still not well understood. In this paper, the role of soil-atmosphere interactions, cloud-temperature interactions and land–sea warming contrast in summer European climate change and how they interact are analyzed. Models for which evapotranspiration is strongly limited by soil moisture in the present climate are found to tend to simulate larger future decrease in evapotranspiration. Models characterized by stronger present-day anti-correlation between cloud cover and temperature over land tend to simulate larger future decrease in cloud cover. Large model-to-model differences regarding land–sea warming contrast and its impacts are also found. Warming over land is expected to be larger than warming over sea, leading to a decrease in continental relative humidity and precipitation because of the discrepancy between the change in atmospheric moisture capacity over land and the change in specific humidity. Yet, it is not true for all the models over our domain of interest. Models in which evapotranspiration is not limited by soil moisture and with a weak present-day anti-correlation between cloud cover and temperature tend to simulate smaller land surface warming. In these models, change in specific humidity over land is therefore able to match the continental increase in moisture capacity, which leads to virtually no change in continental relative humidity and smaller precipitation change. Because of the physical links that exist between the response to anthropogenic forcing of important impact-related climate variables and the way some mechanisms are simulated in the context of present-day variability, this study suggests some potentially useful metrics to reduce summer European climate change uncertainties.  相似文献   

6.
Because of the importance of the changes in the hydrologic cycle, accurate assessment of precipitation characteristics is essential to understand the impact of climate change due to global warming. This study investigates the changes in extreme precipitation with sub-daily and daily temporal scales. For a fine-scale climate change projection focusing on the Korean peninsula (20 km), we performed the dynamical downscaling of the global climate scenario covering the period 1971?C2100 (130-year) simulated by the Max-Planck-Institute global climate model, ECHAM5, using the latest version of the International Centre for Theoretical Physics (ICTP) regional climate model, RegCM3. While annual mean precipitation exhibits a pronounced interannual and interdecadal variability, with the increasing or decreasing trend repeated during a certain period, extreme precipitation with sub-daily and daily temporal scales estimated from the generalized extreme value distribution shows consistently increasing pattern. The return period of extreme precipitation is significantly reduced despite the decreased annual mean precipitation at the end of 21st century. The decreased relatively weak precipitation is responsible for the decreased total precipitation, so that the decreased total precipitation does not necessarily mean less heavy precipitation. Climate change projection based on the ECHAM5-RegCM3 model chain clearly shows the effect of global warming in increasing the intensity and frequency of extreme precipitation, even without significantly increased total precipitation, which implies an increased risk for flood hazards.  相似文献   

7.
Monerie  Paul-Arthur  Sanchez-Gomez  Emilia  Gaetani  Marco  Mohino  Elsa  Dong  Buwen 《Climate Dynamics》2020,55(9-10):2801-2821

The main focus of this study is the zonal contrast of the Sahel precipitation shown in the CMIP5 climate projections: precipitation decreases over the western Sahel (i.e., Senegal and western Mali) and increases over the central Sahel (i.e., eastern Mali, Burkina Faso and Niger). This zonal contrast in future precipitation change is a robust model response to climate change but suffers from a lack of an explanation. To this aim, we study the impact of current and future climate change on Sahel precipitation by using the Large Ensemble of the Community Earth System Model version 1 (CESM1). In CESM1, global warming leads to a strengthening of the zonal contrast, as shown by the difference between the 2060–2099 period (under a high emission scenario) and the 1960–1999 period (under the historical forcing). The zonal contrast is associated with dynamic shifts in the atmospheric circulation. We show that, in absence of a forced response, that is, when only accounting for internal climate variability, the zonal contrast is associated with the Pacific and the tropical Atlantic oceans variability. However, future patterns in sea surface temperature (SST) anomalies are not necessary to explaining the projected strengthening of the zonal contrast. The mechanisms underlying the simulated changes are elucidated by analysing a set of CMIP5 idealised simulations. We show the increase in precipitation over the central Sahel to be mostly associated with the surface warming over northern Africa, which favour the displacement of the monsoon cell northwards. Over the western Sahel, the decrease in Sahel precipitation is associated with a southward shift of the monsoon circulation, and is mostly due to the warming of the SST. These two mechanisms allow explaining the zonal contrast in precipitation change.

  相似文献   

8.
Guodong Sun  Mu Mu 《Climatic change》2013,120(4):755-769
The approach of conditional nonlinear optimal perturbation related to parameter (CNOP-P) is employed to provide a possible climate scenario and to study the impact of climate change on the simulated net primary production (NPP) in China within a state-of-the-art Lund-Potsdam-Jena dynamic global vegetation model (LPJ DGVM). The CNOP-P, as a type of climate perturbation to bring variation in climatology and climate variability of the reference climate condition, causes the maximal impact on the simulated NPP in China. A linear climate perturbation that induces variation in climatology, as another possible climate scenario, is also applied to explore the role of variation in climate variability in the simulated NPP. It is shown that NPP decreases in northern China and increases in northeastern and southern China when the temperature changes as a result of a CNOP-P-type temperature change scenario. A similar magnitude of change in the spatial pattern variations of NPP is caused by the CNOP-P-type and the linear temperature change scenarios in northern and northeastern China, but not in southern China. The impact of the CNOP-P-type temperature change scenario on magnitude of change of NPP is more intense than that of the linear temperature change scenario. The numerical results also show that in southern China, the change in NPP caused by the CNOP-P-type temperature change scenario compared with the reference simulated NPP is sensitive. However, this sensitivity is not observed under the linear temperature change scenario. The seasonal simulations indicate that the differences between the variations in NPP due to the two types of temperature change scenarios principally stem from the variations in summer and autumn in southern China under the LPJ model. These numerical results imply that NPP is sensitive to the variation in temperature variability. The results influenced by the CNOP-P-type precipitation change scenario are similar to those under the linear precipitation change scenario, which cause the increasing NPP in arid and semi-arid regions of the northern China. The above findings indicate that the CNOP-P approach is a useful tool for exploring the nonlinear response of NPP to climate variability.  相似文献   

9.
Terrestrial ecosystems are an important part of Earth systems, and they are undergoing remarkable changes in response to global warming. This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global warming by using the new dynamic global vegetation model in the second version of the Chinese Academy of Sciences (CAS) Earth System Model (CAS-ESM2). We conducted two sets of simulations, a present-day simulation and a future simulation, which were forced by the present-day climate during 1981–2000 and the future climate during 2081–2100, respectively, as derived from RCP8.5 outputs in CMIP5. CO2 concentration is kept constant in all simulations to isolate CO2-fertilization effects. The results show an overall increase in vegetation coverage in response to global warming, which is the net result of the greening in the mid-high latitudes and the browning in the tropics. The results also show an enhancement in carbon fluxes in response to global warming, including gross primary productivity, net primary productivity, and autotrophic respiration. We found that the changes in vegetation coverage were significantly correlated with changes in surface air temperature, reflecting the dominant role of temperature, while the changes in carbon fluxes were caused by the combined effects of leaf area index, temperature, and precipitation. This study applies the CAS-ESM2 to investigate the response of terrestrial ecosystems to climate warming. Even though the interpretation of the results is limited by isolating CO2-fertilization effects, this application is still beneficial for adding to our understanding of vegetation processes and to further improve upon model parameterizations.  相似文献   

10.
Future changes in the climate regimes over China as measured by the Kppen climate classification are reported in this paper. The analysis is based on a high-resolution climate change simulation conducted by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3) driven by the global model of Center for Climate System Research (CCSR)/National Institute for Environment Studies (NIES)/Frontier Research Center for Global Change (FRCGC) MIROC3.2_hires (the Model for Interdisciplinary Research on Climate) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Validation of the model performances is presented first. The results show that RegCM3 reproduces the present-day distribution of the Kppen climate types well. Significant changes of the types are found in the future over China, following the simulated warming and precipitation changes. In southern China, the change is characterized by the replacement of subtropical humid (Cr) by subtropical winter-dry (Cw). A pronounced decrease of the cold climate types is found over China, e.g., tundra (Ft) over the Tibetan Plateau and sub-arctic continental (Ec) over northeast China. The changes are usually greater in the end compared with the middle of the 21st century.  相似文献   

11.
We present an analysis of climate change over southern South America as simulated by a regional climate model. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. The simulations cover a 10-year period representing present-day climate (1981–1990) and two future scenarios for the SRESA2 and B2 emission scenarios for the period 2081–2090. There are a few quantitative differences between the two regional scenarios. The simulated changes are larger for the A2 than the B2 scenario, although with few qualitative differences. For the two regional scenarios, the warming in southern Brazil, Paraguay, Bolivia and northeastern Argentina is particularly large in spring. Over the western coast of South America both scenarios project a general decrease in precipitation. Both the A2 and B2 simulations show a general increase in precipitation in northern and central Argentina especially in summer and fall and a general decrease in precipitation in winter and spring. In fall the simulations agree on a general decrease in precipitation in southern Brazil. This reflects changes in the atmospheric circulation during winter and spring. Changes in mean sea level pressure show a cell of increasing pressure centered somewhere in the southern Atlantic Ocean and southern Pacific Ocean, mainly during summer and fall in the Atlantic and in spring in the Pacific. In relation to the pressure distribution in the control run, this indicates a southward extension of the summer mean Atlantic and Pacific subtropical highs.  相似文献   

12.
The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E–120° E and 15° S–45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991–2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.  相似文献   

13.
In this study, the contributions from changes in man-made greenhouse gases (GHG), anthropogenic aerosols (AA), and land use (LU), as well as natural solar and volcanic (NAT) forcing changes, to observed changes in surface air temperature (T) and precipitation (P) over global land, especially over arid-semiarid areas, during 1946–2005 are quantified using observations and climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that the anthropogenic (ANT) forcings dominate the ubiquitous surface warming seen in observations and lead to slight increases in precipitation over most land areas, while the NAT forcing leads to small cooling over land. GHG increases are the primary factor responsible for the anthropogenic climate change, while the AA forcing offsets a large part of the GHG-induced warming and P changes. The LU forcing generally contributes little to the T and P changes from 1946 to 2005 over most land areas. Unlike the consistent temperature changes among most model simulations, precipitation changes display a large spread among the models and are incomparable with the observations in spatial distributions and magnitude, mainly due to its large internal variability that varies among individual model runs. Using an optimal fingerprinting method, we find that the observed warming over land during 1946–2005 can be largely attributed to the ANT forcings, and the combination of the ANT and NAT forcings can explain about 85~95% of the observed warming trend over global land as well as over most arid-semiarid regions such as Northern China. However, the anthropogenic influences on precipitation over the past 60 years are generally undetectable over most land areas, including most arid-semiarid regions. This indicates that internal variability is still larger than the forced change for land precipitation.  相似文献   

14.
Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultra-high resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.  相似文献   

15.
For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50 % to the range of mean sea level pressure responses and local precipitation. Using key indicators (“steering variables”) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced.  相似文献   

16.
Climate change hotspots in the CMIP5 global climate model ensemble   总被引:2,自引:1,他引:2  
We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2 °C of global warming (relative to the late-20th-century baseline), but not at the higher levels of global warming that occur in the late-21st-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.  相似文献   

17.
General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.  相似文献   

18.
This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.  相似文献   

19.
Zi-An GE  Lin CHEN  Tim LI  Lu WANG 《大气科学进展》2022,39(10):1673-1692
The middle and lower Yangtze River basin (MLYRB) suffered persistent heavy rainfall in summer 2020, with nearly continuous rainfall for about six consecutive weeks. How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020 (hereafter 2020PHR-like event) would change under global warming is investigated. An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer (Rx35day) is introduced. This accumulated precipitation index in summer 2020 is 60% stronger than the climatology, and a statistical analysis further shows that the 2020 event is a 1-in-70-year event. The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble (MME) of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming. Based on the Kolmogorov–Smirnoff test, one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study. The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios (CMIP5 RCP4.5, CMIP6 SSP1-2.6, and SSP2-4.5) and 3–5 times greater under higher-emission scenarios (3.0 times for CMIP5 RCP8.5, 2.9 times for CMIP6 SSP3-7.0, and 4.8 times for CMIP6 SSP5-8.5). The inter-model spread of the probability change is small, lending confidence to the projection results. The results provide a scientific reference for mitigation of and adaptation to future climate change.  相似文献   

20.
This study uses a well-established water balance methodology to evaluate the relative impact of global warming and soil degradation due to desertification on future African water resources. Using a baseline climatology, a GCM global warming scenario, a newly derived soil water-holding capacity data set, and a worldwide survey of soil degradation between 1950 and 1980, four climate and soil degradation scenarios are created to simulate the potential impact of global warming and soil degradation on African water resources for the 2010–2039 time period. Results indicate that, on a continental scale, the impact of global warming will be significantly greater than the impact of soil degradation. However, when only considering the locations where desertification is an issue (wet and dry climate regions), the potential effects of these two different human impacts on local water resources can be expected to be on the same order of magnitude. Drying associated with global warming is primarily the result of increased water demand (potential evapotranspiration) across the entire continent. While there are small increases in precipitation under global warming conditions, they are inadequate to meet the increased water demand. Soil degradation is most severe in highly populated, wet and dry climate regions and results in decreased water-holding capacities in these locations. This results in increased water surplus conditions during wet seasons when the soil's ability to absorb precipitation is reduced. At the same time, water deficits in these locations increase because of reduced soil water availability in the dry seasons. The net result of the combined scenarios is an intensification and extension of drought conditions during dry seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号