首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard approach for geologic storage of CO2 consists of injecting it as a supercritical CO2 phase. This approach places stringent requirements on the caprock, which must display: (1) high entry pressure to prevent the buoyancy driven upwards escape of CO2; (2) low permeability to minimize the upwards flux of brine displaced by the CO2; and (3) high strength to ensure that pressure build up does not cause caprock failure. We propose an alternative approach for cases when the above requirements are not met. The approach consists of extracting brine from the storage formation and then re-injecting it so that it mixes with CO2 at depth in the injection well. Mixing at depth reduces the pressure required for brine and CO2 at the surface. This CO2-saturated brine will sink to the aquifer bottom because it is denser than resident brine, which eliminates the risk of buoyant escape of CO2. The method is particularly favorable when the aquifer dips, because CO2-saturated brine will tend to flow downslope. We perform two- and three-dimensional numerical simulations to study how far upslope the extraction well needs to be located to ensure a very long operation without CO2 ever breaking through. Several sets of simulations were carried out to evaluate the effect of slope, temperature, pressure and CO2 concentration, which is significantly reduced if flue gas (i.e., without capture) is mixed with the brine. We analyze energy requirements to find that the system requires high permeability to be viable, but its performance is improved by taking advantage of the thermal energy of the extracted brine.  相似文献   

2.
Satellite observations of atmospheric CO2 are able to truly capture the variation of global and regional CO2 concentration.The model simulations based on atmospheric transport models can also assess variations of atmospheric CO2 concentrations in a continuous space and time,which is one of approaches for qualitatively and quantitatively studying the atmospheric transport mechanism and spatio-temporal variation of atmospheric CO2 in a global scale.Satellite observations and model simulations of CO2 offer us two different approaches to understand the atmospheric CO2.However,the difference between them has not been comprehensively compared and assessed for revealing the global and regional features of atmospheric CO2.In this study,we compared and assessed the spatio-temporal variation of atmospheric CO2 using two datasets of the column-averaged dry air mole fractions of atmospheric CO2(XCO2)in a year from June 2009 to May 2010,respectively from GOSAT retrievals(V02.xx)and from Goddard Earth Observing System-Chemistry(GEOS-Chem),which is a global 3-D chemistry transport model.In addition to the global comparison,we further compared and analyzed the difference of CO2 between the China land region and the United States(US)land region from two datasets,and demonstrated the reasonability and uncertainty of satellite observations and model simulations.The results show that the XCO2 retrieved from GOSAT is globally lower than GEOS-Chem model simulation by 2 ppm on average,which is close to the validation conclusion for GOSAT by ground measures.This difference of XCO2 between the two datasets,however,changes with the different regions.In China land region,the difference is large,from 0.6 to 5.6 ppm,whereas it is 1.6 to 3.7 ppm in the global land region and 1.4 to 2.7 ppm in the US land region.The goodness of fit test between the two datasets is 0.81 in the US land region,which is higher than that in the global land region(0.67)and China land region(0.68).The analysis results further indicate that the inconsistency of CO2concentration between satellite observations and model simulations in China is larger than that in the US and the globe.This inconsistency is related to the GOSAT retrieval error of CO2 caused by the interference among input parameters of satellite retrieval algorithm,and the uncertainty of driving parameters in GEOS-Chem model.  相似文献   

3.
4.
The concentration of greenhouse gases – particularly carbon dioxide (CO2) – in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. Biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity by blocking leakage pathways. The biofilm could also protect well cement from corrosion by CO2-rich brine.  相似文献   

5.
A CO2-weathering model has been used to explore the possible evolution of the Earth’s climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, “Megaclimates”. Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents). Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence) of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth’s temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing) CO2 level which could, in time, fall below 0.5 PAL, causing serious damage to the biosphere. Fortunately, the rates of change due to solar brightening are slow enough that Mega-climate 3 appears to pose no threat to the biosphere for the next 0.5-2 Gyear.  相似文献   

6.
Atmospheric carbon dioxide is an important kind of greenhouse gas which influences global temperature. Its concentration variation could indicate the distribution of human and natural activities in various regions. Through the non-dispersive infrared method, flask sampling of atmospheric CO2 concentration was measured weekly at four national background stations including Waliguan, Shangdianzi, Lin’an, and Longfengshan. Based on the data collected from September 2006 to August 2007, along with the Waliguan station’s experience on in situ observational data processing, the selection methods for sampling data through the atmospheric background CO2 concentration analysis were preliminarily discussed. On the basis of this result, the variation features of the four typical regions’ atmospheric background CO2 concentration was analyzed for the first time. The results show that the atmospheric CO2 concentration at Waliguan, Shangdianzi, Lin’an, and Longfengshan is 383.5, 385.9, 387.8, and 384.3 ppm, respectively. During the research period, CO2 concentration at the Waliguan station changed slightly. However, the CO2 concentration changed sharply at the Shangdianzi and the Lin’an stations due to the great influence of human activities in the Jingjinji and the Changjiang Delta economic zones, and changed regularly with seasons at Longfengshan station under dual influences of human activities and plant photosynthesis. The results from this study can lay the foundation for more profound studies on atmospheric CO2 concentration level of different areas in China, and could be used to improve the understanding of carbon source and sink distribution.  相似文献   

7.
Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.  相似文献   

8.
While carbon capture and storage (CCS) is increasingly recognised as technologically possible, recent evidence from deep-sea CCS activities suggests that leakage from reservoirs may result in highly CO2 impacted biological communities. In contrast, shallow marine waters have higher primary productivity which may partially mitigate this leakage. We used natural CO2 seeps in shallow marine waters to assess if increased benthic primary productivity could capture and store CO2 leakage in areas targeted for CCS. We found that the productivity of seagrass communities (in situ, using natural CO2 seeps) and two individual species (ex situ, Cymodocea serrulata and Halophila ovalis) increased with CO2 concentration, but only species with dense belowground biomass increased in abundance (e.g. C. serrulata). Importantly, the ratio of below:above ground biomass of seagrass communities increased fivefold, making seagrass good candidates to partially mitigate CO2 leakage from sub-seabed reservoirs, since they form carbon sinks that can be buried for millennia.  相似文献   

9.
内陆水体是大气CO2收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO2排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO2排放特征。结果表明,不同功能池塘水体CO2排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39) mmol/(m2·d))、村塘((48.69±65.89) mmol/(m2·d))和农塘((13.50±15.81) mmol/(m2·d))是大气CO2的热点排放源,其CO2排放通量分别是自然蓄水塘((4.52±23.26) mmol/(m2·d))的18、11和3倍。统计分析也表明,该流域池塘CO2排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO2排放通量全年均值为(37.31±67.47) mmol/(m2·d),是不容忽视的CO2排放源,其中养殖塘和村塘具有较高的CO2排放潜力,在未来研究中需要重点关注。  相似文献   

10.
Increased atmospheric CO2 concentrations are causing greater dissolution of CO2 into seawater, and are ultimately responsible for today’s ongoing ocean acidification. We manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepods, Amphiascoides atopus and Schizopera knabeni were both more sensitive to increased acidity when generated by CO2. The present study indicates that copepods living in environments more prone to hypercapnia, such as mudflats where S. knabeni lives, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion in A. atopus. This interaction could be due to a competition for H+ and metals for binding sites.  相似文献   

11.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

12.
Efflux of CO2 above releases of petroleum light nonaqueous phase liquids (LNAPLs) has emerged as a critical parameter for resolving natural losses of LNAPLs and managing LNAPL sites. Current approaches for resolving CO2 efflux include gradient, flux chamber, and mass balance methods. Herein a new method for measuring CO2 efflux above LNAPL bodies, referred to as CO2 traps, is introduced. CO2 traps involve an upper and a lower solid phase sorbent elements that convert CO2 gas into solid phase carbonates. The sorbent is placed in an open vertical section of 10 cm ID polyvinyl chloride (PVC) pipe located at grade. The lower sorbent element captures CO2 released from the subsurface via diffusion and advection. The upper sorbent element prevents atmospheric CO2 from reaching the lower sorbent element. CO2 traps provide integral measurement of CO2 efflux based over the period of deployment, typically 2 to 4 weeks. Favorable attributes of CO2 traps include simplicity, generation of integral (time averaged) measurement, and a simple means of capturing CO2 for carbon isotope analysis. Results from open and closed laboratory experiments indicate that CO2 traps quantitatively capture CO2. Results from the deployment of 23 CO2 traps at a former refinery indicate natural loss rates of LNAPL (measured in the fall, likely concurrent with high soil temperatures and consequently high degradation rates) ranging from 13,400 to 130,000 liters per hectare per year (L/Ha/year). A set of field triplicates indicates a coefficient of variation of 18% (resulting from local spatial variations and issues with measurement accuracy).  相似文献   

13.
During geologic storage of carbon dioxide (CO2), trapping of the buoyant CO2 after injection is essential in order to minimize the risk of leakage into shallower formations through a fracture or abandoned well. Models for the subsurface behavior of the CO2 are useful for the design, implementation, and long-term monitoring of injection sites, but traditional reservoir-simulation tools are currently unable to resolve the impact of small-scale trapping processes on fluid flow at the scale of a geologic basin. Here, we study the impact of solubility trapping from convective dissolution on the up-dip migration of a buoyant gravity current in a sloping aquifer. To do so, we conduct high-resolution numerical simulations of the gravity current that forms from a pair of miscible analogue fluids. Our simulations fully resolve the dense, sinking fingers that drive the convective dissolution process. We analyze the dynamics of the dissolution flux along the moving CO2–brine interface, including its decay as dissolved buoyant fluid accumulates beneath the buoyant current. We show that the dynamics of the dissolution flux and the macroscopic features of the migrating current can be captured with an upscaled sharp-interface model.  相似文献   

14.
Expeditions during the summers of 2002 and 2003 implemented continuous monitoring of near-surface (2 m height) atmospheric CO2 and H2O concentrations at the 4500 m elevation on Muztagata. The resultant data sets reveal a slight decrease of CO2 concentrations (of about 5 μmol·mol-1) and changes in the diurnal variations from the end of June to the middle August. The daily maximum CO2 concentrations occur between 02:30-05:30 AM (local time) and the minimum levels occur between 12:00-15:30 PM. The atmospheric CO2 concentrations in the summer of 2002 were around 5 μmol·mol-1 lower than those during the same period of 2003, whereas the diurnal amplitude was higher. In contrast, we found that the daily mean atmospheric H2O content in 2003 was much lower than that in 2002 and there exists a striking negative correlation between CO2 and H2O concentrations. We therefore suggest that the near-surface atmospheric CO2 concentration is affected not only by photosynthesis and respiration, but also by the air H2O content in the glaciated region around Muztagata.  相似文献   

15.
There are six classes of water and five geologic environments in the subarctic Nahanni karst. During the summers of 1972 and 1973, 214 water samples were collected from 15 of the 30 hydrogeologic categories. Linear discriminant function analysis, using five measured and two derived chemical variables, indicates that there are statistically significant (0.005 level) differences in water chemistry between similar waters in different geologic environments, between waters in the same geologic environment, and between waters in different hydrogeological categories. Geological environment labels a natural water because it determines the availability of soil CO2 and of soluble minerals. Measurements indicate that mean soil log PCO2 is greatest in areas of shale mantled by till (?2.39), and least in areas of sandy fluvioglacial drift (?3.27). Low values on the sandy drift are due to the sparse shrub vegetation, and to the high degree of soil aeration; soils in areas of shale are clay-rich and support a dense boreal forest. Hydrology influences water chemistry because it determines how much CO2 natural waters pick up from the environment and how much they subsequently lose to the atmosphere, and as a result, whether they dissolve or deposit soluble materials. The similarity between mean calculated log PCO2 in natural waters (?2.92) and mean measured soil log PCO2 (?2.80) suggests that natural waters in Nahanni are dose to equilibrium with mean soil CO2 levels.  相似文献   

16.
17.
Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial–interglacial change in deep North Pacific phosphate (PO4) concentration was minimal, which has been taken by some workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox-sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation – and thus respired carbon storage – over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was depleted in oxygen during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which would have lowered atmospheric carbon dioxide (CO2) by sequestering CO2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data would have accounted for a majority of the observed decrease in glacial atmospheric pCO2.  相似文献   

18.
Causes and effects of global warming have been highly debated in recent years. Nonetheless, injection and storage of CO2 (CO2 sequestration) in the subsurface is becoming increasingly accepted as a viable tool to reduce the amount of CO2 from the atmosphere, which is a primary contributor to global warming. Monitoring of CO2 movement with time is essential to ascertain that sequestration is not hazardous. A method is proposed here to appraise CO2 saturation from seismic attributes using differential effective medium theory modified for pressure (PDEM). The PDEM theory accounts pressure-induced fluid flow between cavities, which is a very important investigation in the CO2-sequestered regime of heterogeneous microstructure. The study area is the lower Tuscaloosa formation at Cranfield in Mississippi, USA, which is one of the active enhanced oil recovery (EOR), and CO2 capture and storage (CCS) fields. Injection well (F1) and two observation wells (F2 and F3) are present close (within 112 m) to the detailed area of study for this region. Since the three wells are closely situated, two wells, namely injection well F1 and the furthest observation well F3, have been focused on to monitor CO2 movement. Time-lapse (pre- and post-injection) log, core and surface seismic data are used in the quantitative assessment of CO2 saturation from the PDEM theory. It has been found that after approximately 9 months of injection, average CO2 saturations in F1 and F3 are estimated as 50% in a zone of thickness ~ 25 m at a depth of ~ 3 km.  相似文献   

19.
Carbon capture and storage is a viable greenhouse gas mitigation technology and the Sleipner CO2 sequestration site in the North Sea is an excellent example. Storage of CO2 at the Sleipner site requires monitoring over large areas, which can successfully be accomplished with time lapse seismic imaging. One of the main goals of CO2 storage monitoring is to be able to estimate the volume of the stored CO2 in the reservoir. This requires a parametrization of the subsurface as exact as possible. Here we use elastic 2D time‐domain full waveform inversion in a time lapse manner to obtain a P‐wave velocity constrain directly in the depth domain for a base line survey in 1994 and two post‐injection surveys in 1999 and 2006. By relating velocity change to free CO2 saturation, using a rock physics model, we find that at the considered location the aquifer may have been fully saturated in some places in 1999 and 2006.  相似文献   

20.
The projected changes in carbon exchange between China terrestrial ecosystem and the atmosphere and vegetation and soil carbon storage during the 21st century were investigated using an atmos-phere-vegetation interaction model (AVIM2). The results show that in the coming 100 a, for SRES B2 scenario and constant atmospheric CO2 concentration, the net primary productivity (NPP) of terrestrial ecosystem in China will be decreased slowly, and vegetation and soil carbon storage as well as net ecosystem productivity (NEP) will also be decreased. The carbon sink for China terrestrial ecosystem in the beginning of the 20th century will become totally a carbon source by the year of 2020, while for B2 scenario and changing atmospheric CO2 concentration, NPP for China will increase continuously from 2.94 GtC·a?1 by the end of the 20th century to 3.99 GtC·a?1 by the end of the 21st century, and vegetation and soil carbon storage will increase to 110.3 GtC. NEP in China will keep rising during the first and middle periods of the 21st century, and reach the peak around 2050s, then will decrease gradually and approach to zero by the end of the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号