首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
华南6月降水异常及其与东亚—太平洋遥相关的关系   总被引:3,自引:0,他引:3  
利用1959~2010年共52年的大气环流和降水资料,我们分析了华南前汛期季风降水 (6月降水) 的变化特征,发现6月华南降水与同期EAP (East Asia-Pacific,东亚—太平洋) 遥相关型有显著的相关关系,两者之间的相关系数为0.35.EAP指数为正时,长江中下游以南的地区降水偏多,而长江以北和黄河之间的地区降水偏少.将华南6月降水分为与EAP相关的降水序列和与EAP独立的降水序列,比较了二者所对应环流异常的异同点.结果表明,与EAP相关的降水异常对应着EAP相关型的环流异常分布特征,降水为正异常时,850hPa风场从低纬度到高纬度呈现“反气旋、气旋、反气旋”的异常分布,湿的偏南风和干的偏北风在华南上空交汇,降水增多;而整个淮河流域上空为偏北风异常,导致南风带来的水汽输送减少,降水偏少,因此降水异常呈现偶极子分布.相比之下,与EAP独立的降水正异常对应的环流异常表现为热带西北太平洋上空的反气旋性环流异常,华南地区上空为显著的西南风异常,输送到华南地区的水汽增多,导致降水偏多.  相似文献   

2.
Zhuoqi He  Renguang Wu 《Climate Dynamics》2014,42(9-10):2323-2337
This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.  相似文献   

3.
The Indian and East Asian summer monsoons are two components of the whole Asian summer monsoon system.Previous studies have indicated in-phase and out-of-phase variations between Indian and East Asian summer rainfall.The present study reviews the current understanding of the connection between Indian and East Asian summer rainfall.The review covers the relationship of northern China,southern Japan,and South Korean summer rainfall with Indian summer rainfall;the atmospheric circulation anomalies connecting Indian and East Asian summer rainfall variations; the long-term change in the connection between Indian and northern China rainfall and the plausible reasons for the change; and the influence of ENSO on the relationship between Indian and East Asian summer rainfall and its change.While much progress has been made about the relationship between Indian and East Asian summer rainfall variations,there are several remaining issues that need investigation.These include the processes involved in the connection between Indian and East Asian summer rainfall,the non-stationarity of the connection and the plausible reasons,the influences of ENSO on the relationship,the performance of climate models in simulating the relationship between Indian and East Asian summer rainfall,and the relationship between Indian and East Asian rainfall intraseasonal fluctuations.  相似文献   

4.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   

5.
利用国家气候中心160站月平均降水资料、印度热带气象研究所的全印度月平均降水资料和NCEP/NCAR的再分析资料,从年际和年代际角度分别研究了欧亚遥相关型(Eurasian teleconnection,EU)对印度夏季风与华北夏季降水关系的影响,并探究其物理机制。结果表明,EU与印度夏季风之间的相关系数只有-0.078,二者相互独立。印度夏季风与华北夏季降水有正相关关系(Indian Summer Monsoon and North China Summer Rainfall,ISM-NCSR),且在正EU位相时,ISM-NCSR关系较弱;负EU位相时,ISM-NCSR关系较强。这是由于EU负位相时,贝加尔湖右侧存在反气旋环流,有利于北风及冷空气南下。因此,强印度季风时北上的暖湿气流在华北地区与偏北风相遇形成锋面,有利于华北降水;弱印度季风时华北地区完全被强北风控制,水汽输送通道被阻断,不利于降水,从而导致ISM-NCSR关系强。正EU位相时与此相反,相关关系弱。  相似文献   

6.
Coupled ocean–atmosphere general circulation models (GCMs) lack sufficient resolution to model the regional detail of changes to mean circulation and rainfall with projected climate warming. In this paper, changes in mean circulation and rainfall in GCMs are compared to those in a variable resolution regional climate model, the Conformal Cubic Atmospheric Model (CCAM), under a high greenhouse gas emissions scenario. The study site is Tasmania, Australia, which is positioned within the mid-latitude westerlies of the southern hemisphere. CCAM projects a different response in mean sea level pressure and mid-latitude westerly circulation to climate warming to the GCMs used as input, and shows greater regional detail of the boundaries between regions of increasing and decreasing rainfall. Changes in mean circulation dominate the mean rainfall response in western Tasmania, whereas changes to rainfall in the East Coast are less related to mean circulation changes. CCAM projects an amplification of the dominant westerly circulation over Tasmania and this amplifies the seasonal cycle of wet winters and dry summers in the west. There is a larger change in the strength than in the incidence of westerly circulation and rainfall events. We propose the regional climate model displays a more sensitive atmospheric response to the different rates of warming of land and sea than the GCMs as input. The regional variation in these results highlight the need for dynamical downscaling of coupled general circulation models to finely resolve the influence of mean circulation and boundaries between regions of projected increases and decreases in rainfall.  相似文献   

7.
2015年我国东部夏季降水呈现南北反位相的空间分布,河套地区降水异常偏少、长江中下游地区降水异常偏多,同期印度中部地区降水负异常,上述三个区域2015年夏季降水距平百分率绝对值极大值均超过55%。东亚和南亚地区2015年夏季降水异常的形成机理主要是由于该年夏季处于El Niňo事件的发展位相,菲律宾群岛及邻近区域反气旋环流异常,江淮地区至日本列岛气旋式环流异常,对流层低层位势高度异常场和整层水汽异常输送场亦存在相一致的空间分布,表现为负位相的EAP(East Asian-Pacific)/PJ(Pacific-Japan)型遥相关,有利于河套地区降水偏少和长江流域降水偏多。热带太平洋海温异常引起热带地区Walker环流负异常,热带西太平洋地区上空受异常下沉气流控制,热带印度洋区域对流层盛行东风异常,减弱了印度夏季风,并造成了印度中部地区夏季降水偏少。另一方面,印度上空对流层低层受异常反气旋控制,该异常反气旋北侧的西风异常沿着青藏高原南麓向东运动,增强了与EAP/PJ型遥相关相联系的异常水汽输送,有利于维持和增强河套地区降水负异常和长江中下游地区降水正异常。  相似文献   

8.
The second EOF(EOF2) mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changes between South China(SC) and the Yellow River-Huaihe River valleys(YH).However,understanding of the EOF2 mode is still limited.In this study,the authors identify that the EOF2 mode physically depicts the latitudinal variation of the climatological summer-mean rainy belt along the Yangtze River valley(YRRB),based on a 160-station rainfall dataset in China for the period 1951-2011.The latitudinal variation of the YRRB is mostly attributed to two different rainfall patterns:one reflects the seesaw(SS) rainfall changes between the YH and SC(SS pattern),and the other features rainfall anomalies concentrated in SC only(SC pattern).Corresponding to a southward shift of the YRRB,the SS pattern,with above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly centered over the SC-East China Sea region,with a northerly anomaly blowing from the YH to SC;while the SC pattern,with above-normal rainfall in SC,is related to an anticyclonic anomaly over the western North Pacific(WNP),corresponding to an enhanced southwest monsoon over SC.The cyclonic anomaly,related to the SS pattern,is induced by a near-barotropic eastward propagating wave train along the Asian upper-tropospheric westerly jet,originating from the mid-high latitudes of the North Atlantic.The anticyclonic anomaly,for the SC pattern,is related to suppressed rainfall in the WNP.  相似文献   

9.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

10.
The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific–Japan or East Asia–Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.  相似文献   

11.
Natural variability of summer rainfall over China in HadCM3   总被引:1,自引:0,他引:1  
Summer rainfall over China has shown decadal variability in the past half century, which has resulted in major north–south shifts in rainfall with important implications for flooding and water resource management. This study has demonstrated how multi-century climate model simulations can be used to explore interdecadal natural variability in the climate system in order to address important questions around recent changes in Chinese summer rainfall, and whether or not anthropogenic climate change is playing a role. Using a 1,000-year simulation of HadCM3 with constant pre-industrial external forcing, the dominant modes of total and interdecadal natural variability in Chinese summer rainfall have been analysed. It has been shown that these modes are comparable in magnitude and in temporal and spatial characteristics to those observed in the latter part of the twentieth century. However, despite 1,000 years of model simulation it has not been possible to demonstrate that these modes are related to similar variations in the global circulation and surface temperature forcing occurring during the latter half of the twentieth century. This may be in part due to model biases. Consequently, recent changes in the spatial distribution of Chinese summer rainfall cannot be attributed solely to natural variability, nor has it been possible to eliminate the likelihood that anthropogenic climate change has been the driving factor. It is more likely that both play a role.  相似文献   

12.
Over the mid-latitude North Pacific, there is a close relationship between interannual variations of the sea surface temperature (SST) and surface shortwave radiation during boreal summer. The present study evaluates this relationship in coupled model simulations, forced model simulations, and retrospective forecasts. It is found that the simulation of this relationship in climate models is closely related to the model biases in the meridional gradients of mean SST and surface shortwave radiation. A southward shift in the region of large mean meridional gradients leads to a similar southward shift in the region of large correlation between the SST and shortwave radiation variations. The relationship is enhanced (weakened) when the mean meridional gradients are stronger (weaker) compared to observations. The shortwave radiation?CSST correlation is weak in individual forced simulations because of the interference of internally generated shortwave radiation variations. The shortwave radiation?CSST correlation increases significantly in the ensemble mean due to reduction of internally generated variability. The long-lead Climate Forecast System (CFS) forecasts have a better simulation of the shortwave radiation?CSST correlation compared to the short-lead forecasts. Estimation based on the CFS ensemble forecasts indicates that the high-frequency atmospheric variations contribute importantly to the SST variability over the mid-latitude North Pacific during boreal summer.  相似文献   

13.
The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958–2013 (1920–2013). The interannual variations of the first two leading EOF modes are linked with the El Niño–Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO–ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northward to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO–ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest–northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.  相似文献   

14.
East Asia summer rainfall is of great social–economic importance. Based on observations, reanalysis and simulations of 16 Coupled Models Intercomparison Project phase 5 (CMIP5) models, the responses of East Asia summer precipitation, as well as some relevant features, to global warming are investigated. The CMIP5 historical simulation reasonably reproduces the climatology of summer rainfall, the associated circulation, the moisture and its transportation, and the mid-troposphere horizontal advection of temperature as well. Under global warming, the rainfall enhancement is robustly projected in the state-of-the-art models over North China, Northeast China, northern coast of Japan and the Kuroshio. As well, the total summer rainfall over East Asia is consistently increased in the models. For the consistent responses, the moisture budget analysis based on the simulations shows that two factors are responsible: one is increased moisture. As East Asia is a climatological ascent region in northern summer, increased moisture induced by global warming leads to more moisture transported upward and thus the rainfall rise. The other is enhanced evaporation, which may be caused by surface warming and provides more precipitable water to the atmosphere column. Furthermore, the results may provide some implications to the long-term variability of East Asia summer rainfall over the last several decades.  相似文献   

15.
In this study, interannual variability of summer rainfall over the northern part of China (NPC) and associated circulation patterns were investigated by using long-term (1961–2013) observational and reanalysis data. Two important NPC rainfall modes were identified by empirical orthogonal function analysis: the first is characterized by an almost uniformly distributed rainfall anomaly over most parts of the NPC, while the second shows rainfall variability in Northeast China (NEC) and its out-of-phase relationship with that in North China (NC) and the northern part of Northwest China. The results also suggest that the NPC summer rainfall anomalies are also closely associated with those in some other parts of China.It is revealed that the circumglobal teleconnection pattern associated with the anomalous Indian summer monsoon (ISM) and the Polar/Eurasia (PEA) pattern work in concert to constitute the typical circulation pattern of the first rainfall mode. The cooperative engagement of the anomalous ISM circulation and the PEA pattern is fundamental in transporting water vapor to the NPC. The study emphasizes that the PEA pattern is essential for the water vapor transport to the NPC through the anomalous midlatitude westerly.In the second NPC rainfall mode, the typical circulation pattern is characterized by the anomalous surface Okhotsk high and the attendant lower tropospheric circulation anomaly over NEC. The circulation anomaly over NEC leads to a redistribution of water vapor fluxes over the NPC and constitutes an out-of-phase relationship between the rainfall anomalies over NEC and NC.  相似文献   

16.
Decadal variations of summer rainfall during 1951 through 1990 are analyzed by using summer rainfall data of 160 stations in China. Four major patterns of decadal variations are identified. The decadal variations of summer rainfall showed northward shift in the eastern China from South China through the Yangtze-Huaihe River to North China. Summer rainfall in the Yangtze-Huaihe River valley underwent two obvious decadal transitions during the 40 years: one from rainy period to drought period in the end of the 1950’s, the other from drought period to rainy period in the late 1970’s. Correspondingly, the atmospheric circulation over East Asia through the western North Pacific showed two similar obvious transitions. The East Asian/ Pacific (EAP) pattern switched from high index to low index in the end of the 1950’s and from low index to high index in the late 1970’s, respectively. Hence, summer rainfall in the Yangtze-Huaihe River valley is closely associated with the EAP pattern not only in the interannual variation but also in the decadal variation.  相似文献   

17.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

18.
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius–Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that such effects are small compared to other sources of uncertainty, although models with large Arabian Sea cold SST biases may suppress the range of potential outcomes for changes to future early monsoon rainfall.  相似文献   

19.
The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air–sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation–SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation–SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall–SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air–sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean–atmosphere interactions in the Indian basin.  相似文献   

20.
Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7– 10-years mode and 25–35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a number of problems for future research, in particular the mechanisms responsible for the monsoon long-term predictability, which is a great challenge in climate research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号