首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mathematical modeling founded on a strong field data base can be a valuable tool for the analysis of ground-water contamination problems. The purposes of this paper are threefold: (1) we demonstrate the dilemma of a knowledgeable ground-water quality regulator whose regulatory decision-making process is confronted with the output of a mathematical model that is based on very limited field test data; (2) we demonstrate a method available to a knowledgeable regulator for assessing approximately a range of possible performances of a contaminated ground-water recovery well field using a range of input data derived from a very limited data base; and (3) we present a strong case for presenting mathematical model outputs as ranges of values rather than as unique solutions. A range is determined by an examination of the level of sophistication of the field data base. Our experience with 12 field sites wherein ground-water contamination has occurred has led us to conclude that field data are seldom, if ever, adequate to defend a unique solution from a mathematical model. Regulatory decisions generally can be reduced to minimization of risks based on the smallest range of model outputs that can be defended on the basis of the field data base. The more limited the field data base, the greater must be the range of defensible model outputs, and consequently, the greater the risk inherent in subsequent regulatory decisions. The knowledgeable regulator can assess the risks in the regulatory decision-making process only if he is able to assess the extent to which the field data base for the mathematical model output reflects state-of-the-art data collection and analysis technologies and methodologies. If an applicant for a permit or license submits a less than adequate data base and concomitantly a broad range of defensible model outputs, he inherently requests that the knowledgeable regulator accept a risk greater than that required if adequate aquifer testing techniques had been employed.  相似文献   

2.
The Chalk aquifer is one of the main sources of water in South East England. The unsaturated zone in the aquifer plays an important role controlling the time and magnitude of recharge and is major pathway for contaminant transport to the water table. A range of previous work has addressed flow processes in the Chalk unsaturated zone, but physical understanding is still incomplete. Here we present the results of a study on flow mechanism in the Chalk unsaturated zone using a combination of statistical analysis and novel laboratory methods. The study was undertaken at three sites (North Heath Barn [NHB], Pyecombe East [PE], and Preston Park [PP]) on the Chalk of the Brighton block, South East England. Daily and hourly time series data of groundwater level and rainfall were correlated. The results show that a slower groundwater level response to rainfall occurs during dry seasons (summer and autumn) when the amount of effective rainfall is less than 4 mm/day, with a thicker and drier unsaturated zone. A faster response occurs during wet seasons (winter and spring) when the daily effective rainfall exceeds 4 mm/day with a thinner and wetter unsaturated zone. Periods of very rapid response (within 15 h) were observed during wet seasons at NHB and PE sites, with unsaturated hydraulic conductivity (Ku) inferred to reach 839 mm/day. A slower response was observed at an urbanized site (PP) as a result of reduction in direct recharge due to reduced infiltration, due to presences of impermeable infrastructure covering the area around PP borehole. Laboratory measurements of Ku of the Chalk matrix using a geotechnical centrifuge show variation from 4.27 to 0.07 mm/day, according to the level of saturation. Thus, the rapid responses cannot be linked to matrix flow only but indicate the contribution of fracture and karstic flow processes in conducting water.  相似文献   

3.
4.
5.
6.
7.
8.
Aquifer storage and recovery (ASR) can provide a means of storing water for irrigation in agricultural areas where water availability is limited. A concern, however, is that the injected water may lead to a degradation of groundwater quality. In many agricultural areas, nitrate is a limiting factor. In the Umatilla Basin in north central Oregon, shallow alluvial groundwater with elevated nitrate‐nitrogen of <3 mg/L to >9 mg/L is injected into the Columbia River Basalt Group (CRBG), a transmissive confined aquifer(s) with low natural recharge rates. Once recovery of the injected water begins, however, NO3‐N in the recovered water decreases quickly to <3 mg/L (Eaton et al. 2009), suggesting that NO3‐N may not persist within the CRBG during ASR storage. In contrast to NO3‐N, other constituents in the recovered water show little variation, inconsistent with migration or simple mixing as an explanation of the NO3‐N decrease. Nitrogen isotopic ratios (δ15N) increase markedly, ranging from +3.5 to > +50, and correlate inversely with NO3‐N concentrations. This variation occurs in <3 weeks and recovery of <10% of the originally injected volume. TOC is low in the basalt aquifer, averaging <1.5 mg/L, but high in the injected source water, averaging >3.0 mg/L. Similar to nitrate concentrations, TOC drops in the recovered water, consistent with this component contributing to the denitrification of nitrate during storage.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The Northern Guam Lens Aquifer is an island karst aquifer in uplifted young, highly conductive limestone. Calculations of recharge based on differences between daily rainfall and daily pan evaporation suggest that the maximum annual mass of water delivered to the freshwater lens is about 67% of mean annual rainfall. Hydrographs of daily well-level responses plotted against daily rainfall indicate that the rate at which water is delivered to the lens is a function of rainfall intensity and the relative saturation of the vadose zone. Together, these variables determine the degree to which stormwater is shunted into fast flow through preferred pathways that bypass the bedrock matrix, rather than percolating slowly through the bedrock matrix.

Data from the 40-year interval from 1956 to 1995 show that some 17% of rainfall on northern Guam arrives in small amounts (<0.6 cm/day). Most of this light rainfall is probably lost to evapotranspiration. At least another 20% of total rainfall on Guam arrives at very high intensities (>5.0 cm/day), which tend to promote fast flow at the expense of percolation. Rapid recovery of the water table from rapid recharge suggests that the lens either takes such recharge into storage very rapidly, discharges it rapidly without taking it into storage, or some combination of both. Significant vadose buffering of recharge to the lens is indicated by the fact that simulations assuming that the recharge from precipitation received in any given month is transmitted to the lens during the same month consistently over-predict observed peak mean monthly water levels and under-predict the minima.  相似文献   


17.
18.
19.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

20.
Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis (18O, 2H, 3H, 14C, 13C, 34S, 18O-SO4, 87Sr, 37Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with δ18O values (−9.6 to −12.4) similar to local, modern precipitation (−7.4 to −10), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted δ18O values (−16 to −18) relative to local, modern precipitation, and 14C ages 32,000 to more than 47,000 years before present. Sulfate, δ18O, δ2H, δ34S, and δ18O-SO4 concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between 14C and Darcy age estimates indicate that 14C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号