首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   

3.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   

4.
Gas‐saturated groundwater forms bubbles when brought to atmospheric pressure, preventing precise determination of its in situ dissolved gas concentrations. To overcome this problem, a modeling approach called the atmospheric sampling method is suggested here to recover the in situ dissolved gas concentrations of groundwater collected ex situ under atmospheric conditions at the Horonobe Underground Research Laboratory, Japan. The results from this method were compared with results measured at the same locations using two special techniques, the sealed sampler and pre‐evacuated vial methods, that have been developed to collect groundwater under its in situ conditions. In gas‐saturated groundwater cases, dissolved methane and inorganic carbon concentrations derived using the atmospheric sampling method were mostly within ±4 and ±10%, respectively, of values from the sealed sampler and pre‐evacuated vial methods. In gas‐unsaturated groundwater, however, the atmospheric sampling method overestimated the in situ dissolved methane concentrations, because the groundwater pressure at which bubbles appear (Pcritical) was overestimated. The atmospheric sampling method is recommended for use where gas‐saturated groundwater can be collected only ex situ under atmospheric conditions.  相似文献   

5.
Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale‐gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near‐pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre‐industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane‐rich samples were associated with high‐salinity, NaCl‐type groundwater and elevated levels of ethane, 4He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ13C‐CH4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane‐rich samples record a history of fractionation during gas‐phase migration from source rocks to shallow aquifers. Conversely, methane‐poor samples have a paucity of ethane and 4He, near saturation levels of atmospheric noble gases, and more negative δ13C‐CH4; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas).  相似文献   

6.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

7.
8.
Entrapped gas bubbles in peat can alter the buoyancy, storativity, void ratio and expansion/contraction properties of the peat. Moreover, when gas bubbles block water‐conducting pores they can significantly reduce saturated hydraulic conductivity and create zones of over‐pressuring, perhaps leading to an alteration in the magnitude and direction of groundwater flow and solute transport. Some previous researches have demonstrated that these zones of over‐pressuring are not observed by the measurements of pore‐water pressures using open‐pipe piezometers in peat; rather, they are only observed with pressure transducers sealed in the peat. In has been hypothesized that open‐pipe piezometers vent entrapped CH4 to the atmosphere and thereby do not permit the natural development of zones of entrapped gas. Here we present findings of the study to investigate whether piezometers vent subsurface CH4 to the atmosphere and whether the presence of piezometers alters the subsurface concentration of dissolved CH4. We measured the flux of methane venting from the piezometers and also determined changes in pore‐water CH4 concentration at a rich fen in southern Ontario and a poor fen in southern Quebec, in the summer of 2004. Seasonally averaged CH4 flux from piezometers was 1450 and 37·8‐mg CH4 m?2 d?1 at the southern Ontario site and Quebec site, respectively. The flux at the Ontario site was two orders of magnitude greater than the diffusive flux at the site. CH4 pore‐water concentrations were significantly lower in open piezometers than in water taken from sealed samplers at both the Ontario and Quebec sites. The flux of CH4 from piezometers decreased throughout the season suggesting that CH4 venting through the piezometer exceeded the rate of methanogenesis in the peat. Consequently we conclude that piezometers may alter the gas dynamics of some peatlands. We suggest that less‐invasive techniques (e.g. buried pressure transducers, tracer experiments) are needed for the accurate measurement of pore‐water pressures and hydraulic conductivity in peatlands with a large entrapped gas component. Furthermore, we argue that caution must be made in interpreting results from previous peatland hydrology studies that use these traditional methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Trevor Klein  Laura Toran 《水文研究》2016,30(17):2948-2957
The hydrologic and biogeochemical processes that control nutrient export in urban streams are not well understood. Attenuation can occur by tributary dilution, groundwater discharge, and biological processing both in the water column and the hyporheic zone. A wastewater treatment plant on Pennypack Creek, an urban stream near Philadelphia, PA, provided high nitrate concentrations for analysis of downstream attenuation processes. Longitudinal sampling for an 8‐km reach revealed decreases in nitrate concentration of 2 mg l?1 at high flow and 4.5 mg l?1 during low flow. During high flow, δ15N‐NO3 increased from 9.5 to 10.5‰ and during low flow increased from 10.1 to 11.1‰. Two reaches were sampled at fine spatial intervals (approximately 200 m) to better identify attenuation processes. Mixing analysis indicated that groundwater discharge and biological processing both control nitrate concentration and isotope signatures. However, fine‐scaled sampling did not reveal spatially discrete zones; instead, these processes were occurring simultaneously. While both processes attenuate nitrate, they have opposite isotope signatures, which may have muted changes in δ15N‐NO3. At high flow, a decrease in Cl/NO3 ratios helped distinguish groundwater discharge occurring along both finely sampled reaches. At low flow, biological processing seemed to be occurring more extensively, but the δ15N‐NO3 signature was not consistent with either a single process or a sequential combination of groundwater dilution and biological nitrate attenuation. The collocation of processes makes it more difficult to assess biological processing hot spots and predict how urbanization and subsequent stream restoration influence nitrate attenuation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Conservative solute injections were conducted in three first-order montane streams of different geological composition to assess the influence of parent lithology and alluvial characteristics on the hydrological retention of nutrients. Three study sites were established: (1) Aspen Creek, in a sandstone–siltstone catchment with a fine-grained alluvium of low hydraulic conductivity (1·3×10−4 cm/s), (2) Rio Calaveras, which flows through volcanic tuff with alluvium of intermediate grain size and hydraulic conductivity (1·2×10−3 cm/s), and (3) Gallina Creek, located in a granite/gneiss catchment of coarse, poorly sorted alluvium with high hydraulic conductivity (4·1×10−3 cm/s). All sites were instrumented with networks of shallow groundwater wells to monitor interstitial solute transport. The rate and extent of groundwater–surface water exchange, determined by the solute response in wells, increased with increasing hydraulic conductivity. The direction of surface water–groundwater interaction within a stream was related to local variation in vertical and horizontal hydraulic gradients. Experimental tracer responses in the surface stream were simulated with a one-dimensional solute transport model with inflow and storage components (OTIS). Model-derived measures of hydrological retention showed a corresponding increase with increasing hydraulic conductivity. To assess the temporal variability of hydrological retention, solute injection experiments were conducted in Gallina Creek under four seasonal flow regimes during which surface discharge ranged from baseflow (0·75 l/s in October) to high (75 l/s during spring snowmelt). Model-derived hydrological retention decreased with increasing discharge. The results of our intersite comparison suggest that hydrological retention is strongly influenced by the geologic setting and alluvial characteristics of the stream catchment. Temporal variation in hydrological retention at Gallina Creek is related to seasonal changes in discharge, highlighting the need for temporal resolution in studies of the dynamics of surface water–groundwater interactions in stream ecosystems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
Knowledge on groundwater–surface water interaction and especially on exchange fluxes between streams and aquifers is an important prerequisite for the study of transport and fate of contaminants and nutrients in the hyporheic zone. One possibility to quantify groundwater–surface water exchange fluxes is by using heat as an environmlental tracer. Modern field equipment including multilevel temperature sticks and the novel open‐source analysis tool LPML make this technique ever more attractive. The recently developed LPML method solves the one‐dimensional fluid flow and heat transport equation by combining a local polynomial method with a maximum likelihood estimator. In this study, we apply the LPML method on field data to quantify the spatial and temporal variability of vertical fluxes and their uncertainties from temperature–time series measured in a Belgian lowland stream. Over several months, temperature data were collected with multilevel temperature sticks at the streambed top and at six depths for a small stream section. Long‐term estimates show a range from gaining fluxes of ?291 mm day?1 to loosing fluxes of 12 mm day?1; average seasonal fluxes ranged from ?138 mm day?1 in winter to ?16 mm day?1 in summer. With our analyses, we could determine a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Such spatial and temporal variability should be taken into account in biogeochemical cycling of carbon, nutrients and metals and in fate analysis of contaminant plumes. In general, the stream section was gaining during most of the observation period. Two short‐term high stream stage events, seemingly caused by blockage of the stream outlet, led to a change in flow direction from gaining to losing conditions. We also found more discharge occurring at the outer stream bank than at the inner one indicating a local flow‐through system. With the conducted analyses, we were able to advance our understanding of the regional groundwater flow system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this research the dissolved inorganic nitrogen (DIN) loadings from direct precipitation, stream flow and groundwater discharge to two small estuaries located in Prince Edward Island (PEI), Canada, were quantified over a 2‐year period. The two estuaries, like many around the world, exhibit deteriorating conditions that are believed to be related to excessive nitrogen transport from adjacent catchments. The significance of the groundwater transport pathway and the temporal variability of the loadings have not been previously investigated. The wet fraction of the atmospheric loading was quantified using available precipitation and DIN concentration records. Stream water entering the estuaries and the discharge from numerous shoreline springs, the predominate form of groundwater discharge, were monitored periodically during the study. The annual DIN loads delivered to both estuaries were dominated by streams, although groundwater discharge provided significant contributions of approximately 15–18%. Temporal variability of DIN loading was large, with monthly loads varying by a factor of 5; this variability was found to be primarily related to the variability of freshwater discharge. Concentrations of nitrate in stream water discharging to the estuaries and shoreline groundwater springs were similar in each catchment, suggesting that there was minimal differential attenuation during transport via these two pathways. The McIntyre Creek estuary had one of the highest normalized loads reported in the literature (1700 kg NO3‐N/ha estuary/year), more than four‐fold that of the Trout River estuary, and this result appears to be related to the larger percentage of land area used for potato production in the catchment. This study demonstrates that direct groundwater discharge to estuaries in PEI should not be ignored and that seasonal variations in loading may be important for managing DIN delivery to such estuaries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Fine particulate organic matter (FPOM) represents a major component of stream organic matter budgets, and its dynamics greatly affect the productivity and metabolism of a stream community. FPOM transport dynamics has been well documented in high-gradient streams with rocky substrates, but information from low-gradient, sandy-bottom streams has been lacking. We estimated FPOM retention patterns in Payne Creek, a 2nd order Coastal Plain stream (USA), under naturally varying hydraulic conditions (discharge and velocity). Corn pollen, as an FPOM analogue, was released along with a conservative solute tracer and the particle retention coefficient (k p) was calculated by fitting the ratio of total pollen remaining in the water column against the longitudinal transport distance to an exponential decay model. Pollen k p (n = 4) ranged from 0.034 to 0.214 /m, and particle transport distance (S p) ranged from 4.7 to 29.7 m. The S p measured in Payne Creek was in the lowest range of previously reported values, and such rapid particle retention was attributed to the low channel slope and slow current velocity. S p was significantly correlated to water velocity and the channel friction factor, but not to discharge (Q). Two summer experiments conducted in contiguous stream segments resulted in the shortest (4.7 m) and longest (29.7 m) S p, despite the similar Q. This was attributed to the segment-scale channel alterations that occurred during the previous winter, which led to very different hydraulic conditions in the two stream segments. In Payne Creek, seasonal changes in hydrology and segment-scale variation in channel morphology were the main factors controlling FPOM transport and retention.  相似文献   

15.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Surface water–groundwater interaction in the hyporheic zone may enhance biogeochemical cycling in streams, and it has been hypothesized that streams exchanging more water with the hyporheic zone should have more rapid nitrate utilization. We used simultaneous conservative solute and nitrate addition tracer tests to measure transient storage (which includes hyporheic exchange and in‐stream storage) and the rate of nitrate uptake along three reaches within the Red Canyon Creek watershed, Wyoming. We calibrated a one‐dimensional transport model, incorporating transient storage (OTIS‐P), to the conservative solute breakthrough curves and used the results to determine the degree of transient storage in each reach. The nitrate uptake length was quantified from the exponential decrease in nitrate concentration with distance during the tracer tests. Nitrate uptake along the most downstream reach of Red Canyon Creek was rapid (turnover time K?1c = 32 min), compared with nitrate uptake reported in other studies (K?1c = 12 to 551 min), but other sites within the watershed showed little nitrate retention or loss. The uptake length Sw‐NO?3 for the most downstream reach was 500 m and the mass transfer coefficient Vf‐NO?3 was 6·3 m min?1. Results from 15 other nitrate‐addition tracer tests were used to create a regression model relating transient storage and measures of stream flow to nitrate uptake length. The model, which includes specific discharge and transient storage area, explains almost half the variability in nitrate uptake length (adjusted R2 = 0·44) and is most effective for comparing sites with very different stream characteristics. Although large differences in specific discharge and storage zone area explain inter‐site differences in nitrate uptake, other unmeasured variables, such as available organic carbon and microbial community composition, are likely important for predicting differences in nitrate uptake between sites with similar specific discharge rates and storage zone areas, such as when making intra‐site comparisons. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 (99Tc) along Little Bayou Creek, a first-order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and 99Tc to the creek, and TCE concentrations tended to vary with 99Tc in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, , and , values of δ37ClDOCl in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that anaerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.  相似文献   

18.
Little Kickapoo Creek (LKC), a low‐gradient stream, mobilizes its streambed–fundamentally altering its near‐surface hyporheic zone–more frequently than do higher‐gradient mountain and karst streams. LKC streambed mobility was assessed through streambed surveys, sediment sampling, and theoretical calculations comparing basal shear stress (τb) with critical shear stress (τc). Baseflow τb is capable of entraining a d50 particle; bankfull flow could entrain a 51·2 mm particle. No particle that large occurs in the top 30 cm of the substrate, suggesting that the top 30 cm of the substrate is mobilized and redistributed during bankfull events. Bankfull events occur on average every 7·6 months; flows capable of entraining d50 and d85 particles occur on average every 0·85 and 2·1 months, respectively. Streambed surveys verify streambed mobility at conditions below bankfull. While higher gradient streams have higher potential energy than LKC, they achieve streambed‐mobilization thresholds less frequently. Heterogeneous sediment redistribution creates an environment where substrate hydraulic conductivity (K) varies over four orders of magnitude. The frequency and magnitude of the substrate entrainment has implications on hyporheic zone function in fluid, solute and thermal transport models, interpretations of hyporheic zone stability, and understanding of LKC's aquatic ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Methane emissions from hydroelectric reservoirs can comprise a considerable portion of anthropogenic methane. However, lack of data on CH4 emissions in different geographical regions and high spatial‐temporal variability in the emission rates of reservoirs has led to uncertainties regarding regional emission estimates of CH4. In the subtropical plateau climate region, we used the Ertan hydroelectric reservoir as a study area. The CH4 flux at the air‐water interface was assessed by floating chambers and factors influencing emissions, including the distance from the dam, water depth, seasonal variation in wet and dry season, air‐water temperature gradient and wind speed, and was also studied through a year‐long systematic sampling and monitoring experiment. The results showed that the surface of the reservoir was a source of CH4 during the sampling period and the annual average CH4 flux was 2·80 ± 1·52 mg m?2 d?1. CH4 flux (and its variation) was higher in the shallow water areas than in the deep‐water areas. CH4 flux near the dam was significantly higher than that of other locations farther from the dam in the dry season. The seasonal variations of CH4 emission in wet and dry seasons were minor and significant diurnal variations were observed in wet and dry seasons. Exponential relationships between the CH4 flux and air‐water temperature gradient were found. Air‐water temperature gradient was an important factor influencing diurnal variations of CH4 flux in the Ertan hydroelectric reservoir. These results indicate that systematic sampling is needed to better estimate CH4 flux through coverage of the spatial variation of different water depths, measuring‐point distance from the dam, seasonal variation in wet and dry seasons and changes in climate factors (such as air‐water temperature gradient). Our results also provide a fundamental parameter for CH4 emission estimation of global reservoirs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Entrapped biogenic gas in peat can greatly affect peatland biogeochemical and hydrological processes by altering volumetric water content, peat buoyancy, and ‘saturated’ hydraulic conductivity, and by generating over‐pressure zones. These over‐pressure zones further affect hydraulic gradients which influence water and nutrient flow direction and rate. The dynamics of entrapped gas are of global interest because the loss of this gas to the atmosphere via ebullition (bubbling) is likely the dominant transport mechanism of methane (CH4) to the atmosphere from peatlands, which are the largest natural terrestrial source per annum of atmospheric CH4. We investigated the relationship between atmospheric pressure and temperature on volumetric gas content (VGC) and CH4 ebullition using a laboratory peat core incubation experiment. Peat cores were incubated at three temperatures (one core at 4 °C, three cores at 11 °C, and one core at 20 °C) in sealed PVC cylinders, instrumented to measure VGC, pore‐water CH4 concentrations, and ebullition (volume and CH4 concentrations). Ebullition events primarily occurred (71% of the time) during periods of falling atmospheric pressure. The duration of the drop in atmospheric pressure had a larger control on ebullition volume than the magnitude of the drop. VGC in the 20 °C core increased from the onset of the experiment and reached a fluctuating but time‐averaged constant level between experiment day 30 and 115. The change in VGC was low for the 11 °C cores for the initial period of the experiment but showed large increases when the growth chamber temperature increased to 20 °C due to a malfunction. The core maintained at 4 °C showed only a small increase in entrapped gas content throughout the experiment. The 20 °C core showed the largest increase in VGC. The increases in VGC occurred despite pore‐water concentrations of CH4 being below the equilibrium solubility level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号