首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-period double degenerates (DDs) are close white dwarf–white dwarf binary stars which are the result of the evolution of interacting binary stars. We present the first definitive measurements of the mass ratio for two DDs, WD 0136+768 and WD 1204+450, and an improved measurement of the mass ratio for WD 0957−666. We compare the properties of the six known DDs with measured mass ratios to the predictions of various theoretical models. We confirm the result that standard models for the formation of DDs do not predict sufficient DDs with mass ratios close to 1. We also show that the observed difference in cooling ages between white dwarfs in DDs is a useful constraint on the initial mass ratio of the binary. A more careful analysis of the properties of the white dwarf pair WD 1704+481.2 leads us to conclude that the brighter white dwarf is older than its fainter companion. This is the opposite of the usual case for DDs and is caused by the more massive white dwarf being smaller and cooling faster. The mass ratio in the sense (mass of younger star)/(mass of older star) is then  1.43±0.06  rather than the value of  0.70±0.03  given previously.  相似文献   

2.
3.
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 h which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+5421 contains two distinct periodic signals, the 2.16-h ellipsoidal modulation discovered by Koen, Orosz & Wade and an additional modulation at 7.8 h. This 7.8-h modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Secondly, after the 7.8-h modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We have used the Wilson–Devinney code to model the light curve to obtain the inclination, the mass ratio and the Ω potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of     and     ( M total     , 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass–radius relation, we find     and     (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 M at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8-h modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.  相似文献   

4.
5.
6.
We report a study of the photospheric composition of the hot DA white dwarf WD 2218+706, which is also the central star of the old planetary nebula DeHt5. Helium is detected in the far-UV spectrum. In addition, the star clearly contains significant quantities of elements heavier than He at abundances generally a factor of 2 to 10 higher than those found in the archetypal heavy element-rich DA G191−B2B. This is the first detection of trace He using the He  ii λ 1640 line in an isolated DA white dwarf, but the low surface gravity is more indicative of a binary evolution route from the red giant branch rather than a path along the asymptotic giant branch (AGB) as a single star. However, the absence of any evidence for a companion star and the uncertainty in the measured mass for WD 2218+706 still allow the possibility of an origin along an AGB evolutionary track.
We reanalyse the existing optical spectra of WD 2218+706 using our latest pure H and heavy element-rich model atmospheres, obtaining a good match between the observed and synthetic spectra with either set of models. We find little evidence of any inconsistency in the temperature required to fit individual Balmer lines, as reported elsewhere for this star. Any discrepancies we see are confined to the H α line and the core of H β but they do not compromise our analysis.  相似文献   

7.
8.
9.
10.
We present a parallax measurement for the very cool degenerate WD 0346+246, the serendipitous discovery of which was reported by Hambly et al. We find an absolute parallax of 36±5 mas, yielding a distance estimate of 28±4 pc. The resulting absolute visual magnitude of the object is M V =16.8±0.3, making it the second-lowest luminosity white dwarf currently known. We use the distance estimate and measured proper motion to show that the object has kinematics consistent with membership of the Galactic halo. WD 0346+246 is therefore by far the coolest and least luminous of only a handful of plausible halo white dwarf candidates. As such, the object has relevance to the ongoing debate concerning the results of microlensing experiments and the nature of any baryonic dark matter component to the Galactic halo residing in stellar remnants.  相似文献   

11.
We describe a spectroscopic survey designed to uncover an estimated ∼40 AM Canum Venaticorum (AM CVn) stars hiding in the photometric data base of the Sloan Digital Sky Survey. We have constructed a relatively small sample of about 1500 candidates based on a colour selection, which should contain the majority of all AM CVn binaries while remaining small enough that spectroscopic identification of the full sample is feasible.
We present the first new AM CVn star discovered using this strategy, SDSS J080449.49+161624.8, the ultracompact binary nature of which is demonstrated using high-time-resolution spectroscopy obtained with the Magellan telescopes at Las Campanas Observatory, Chile. A kinematic 'S-wave' feature is observed on a period   P orb= 44.5 ± 0.1 min  , which we propose is the orbital period, although the present data cannot yet exclude its nearest daily aliases.
The new AM CVn star shows a peculiar spectrum of broad, single-peaked helium emission lines with unusually strong series of ionized helium, reminiscent of the (intermediate) polars among the hydrogen-rich cataclysmic variables. We speculate that SDSS J0804+1616 may be the first magnetic AM CVn star. The accreted material appears to be enriched in nitrogen, to N/O ≳ 10 and N/C > 10 by number, indicating CNO cycle hydrogen burning, but no helium burning, in the prior evolution of the donor star.  相似文献   

12.
We present time-series Very Large Telescope (VLT) spectroscopy and New Technology Telescope (NTT) photometry of the cataclysmic variable SDSS J220553.98+115553.7, which contains a pulsating white dwarf. We determine a spectroscopic orbital period of   P orb= 82.825 ± 0.089 min  from velocity measurements of the Hα emission line. A period analysis of the light curves reveals a dominant periodicity at   P phot= 44.779 ± 0.038 min  which is not related to the spectroscopic period. However, the light curves do not exhibit a variation at any frequency which is attributable to GW Lib-type pulsations, to a detection limit of 5 mmag. This non-detection is in contrast to previous studies which have found three pulsation frequencies with amplitudes of 9–11 mmag at optical wavelengths. Destructive interference and changes to the thermal properties of the driving layer in direct response to accretion can be ruled out as causes of the non-detection. Alternatively, it is feasible that the object has cooled out of the instability strip since a previous (unobserved) dwarf nova superoutburst. This would be the first time this behaviour has been seen in a cataclysmic variable pulsator. Another possibility is that changes in the surface characteristics, possibly induced by accretion phenomena, have modified the surface visibility of the pulsation modes. Further observations, particularly improved constraints on the time-scale for changes in the mode spectrum, are needed to distinguish among possible explanations.  相似文献   

13.
We present 594 radial velocity measurements for 71 white dwarfs obtained during our search for binary white dwarfs and not reported elsewhere. We identify three excellent candidate binaries, which require further observations to confirm our preliminary estimates for their orbital periods, and one other good candidate. We investigate whether our data support the existence of a population of single, low-mass (≲0.5 M) white dwarfs (LMWDs). These stars are difficult to explain using standard models of stellar evolution. We find that a model with a mixed single/binary population is at least ~20 times more likely to explain our data than a pure binary population. This result depends on assumed period distributions for binary LMWDs, assumed companion masses and several other factors. Therefore, the evidence in favour of the existence of a population of single LMWDs is not sufficient, in our opinion, to firmly establish the existence of such a population, but does suggest that extended observations of LMWDs to obtain a more convincing result would be worthwhile.  相似文献   

14.
We present spectroscopy and photometry of GD 448, a detached white dwarf – M dwarf binary with a period of 2.47 h. We find that the Na  I  8200-Å feature is composed of narrow emission lines, owing to irradiation of the M dwarf by the white dwarf, within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational redshift measurement from spectra of the Hα line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 ± 0.01 and 0.096 ± 0.004 M, respectively). We use a simple model of the Ca II emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 ± 0.020 R. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius, and is less than half the size of its Roche lobe. The thermal time-scale of the M dwarf is much longer than the cooling age of the white dwarf, so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the Hα emission from the M dwarf remains to be explained, but the strength of the line may be due to X-ray heating of the M dwarf owing to accretion on to the white dwarf from the M dwarf wind.  相似文献   

15.
16.
17.
We report the discovery of the nearby  ( d = 24 pc)  HD 75767 as an eight billion year old quadruple system consisting of a distant M dwarf pair, HD 75767 C–D, in orbit around the known short-period   P = 10.25 d  single-lined binary HD 75767 A–B, the primary of which is a solar-like G star. On the reasonable assumption of synchronous orbital rotation as well as rotational and orbital coplanarity for the inner pair, we get   M B= 0.96 M  for the unseen HD 75767 B, that is, the case of a massive white dwarf. Upon future evolution, mass transfer towards HD 75767 B will render the   M A= 0.96 M  G-type primary, now a turnoff star, to become a helium white dwarf of   M A∼ 0.33 M  . Depending on the mass accretion rate, accretion efficiency and composition of the massive white dwarf, this in turn may result in a collapse of HD 75767 B with the formation of a millisecond pulsar, i.e. the creation of a low-mass binary pulsar (LMBP), or, instead, a Type Ia supernova explosion and the complete disruption of HD 75767 B. Irrespective of which scenario applies, we point to the importance of the distant M dwarfs as the likely agents for the formation of the inner, short-period HD 75767 A–B pair, and hence a path that particularly avoids preceding phases of common envelope evolution.  相似文献   

18.
We present the results on period search and modelling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long-period pulsation modes, and has a strongly non-sinusoidal light curve. We determined six frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fitting models resulting from a grid search, we selected three that gave   l = 1  solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and  0.680  M   . The three 'favoured' models have   M H  between  2.5 × 10−5 and 6.3 × 10−6  M *  and give 14.2–14.8 mas seismological parallax. The  0.645  M   (11 400 K) model also matches the spectroscopic  log  g   and   T eff  within 1σ. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required.  相似文献   

19.
We have used the radial velocity variations of two sdB stars previously reported to be binaries to establish their orbital periods. They are PG 0940+068 ( P =8.33 d) and PG 1247+554 ( P =0.599 d). The minimum masses of the unseen companions, assuming a mass of 0.5 M for the sdB stars, are 0.090±0.003 M. for PG 1247+554 and 0.63±0.02 M for PG 0940+068. The nature of the companions is not constrained further by our data.  相似文献   

20.
The white dwarf stars WD 1614+136 and WD 1353+409 are not sufficiently massive to have formed through single-star evolution. However, observations to date have not yet found any evidence for binarity. It has therefore been suggested that these stars are the result of a merger. In this paper we place an upper limit of ≈ 50 km s−1 on the projected rotational velocities of both stars. This suggests that, if these stars are the results of a merger, efficient angular momentum loss with accompanying mass loss must have occurred. If the same process occurs following the merging of more massive white dwarf stars, the predicted rate of Type Ia supernovae due to merging white dwarfs may have been greatly overestimated. Further observations to determine binarity in WD 1614+136 and WD 1353+409 are therefore encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号