首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simulated rainfall experiments were performed on bare, undecomposed litter layer and semi-decomposed litter layer slopes with litter biomasses of 0, 50, 100 and 150 g m−2, respectively, to evaluate the effect of the undecomposed layer and semi-decomposed layer of Quercus variabilis litter on the soil erosion process and the particle size distribution of eroded sediment. The undecomposed layer and semi-decomposed layer of litter reduced the runoff rate by 10.91–27.04% and 12.91–36.05%, respectively, and the erosion rate by 13.35–40.98% and 17.16–59.46%, respectively. The percentage of smaller particles (clay and fine silt particles) decreased and the percentage of larger particles (coarse silt and sand particles) increased with an increased rainfall duration on all treated slopes, while the extent of the eroded sediment particle content varied among the treated slopes with the rainfall duration, with bare slopes exhibiting the largest variability, followed by undecomposed litter layer slopes and finally semi-decomposed litter layer slopes. The clay and sand particles were transported as aggregates, and fine silt and coarse silt particles were transported as primary particles. Compared with the original soil, sediment eroded from all treated slopes was mainly enriched in smaller particles. Furthermore, the loss of the smaller particles from the undecomposed litter layer slopes was lower than that from the semi-decomposed litter layer slopes, indicating that the undecomposed litter layer alleviated soil coarsening to some extent. The findings from this study improve our understanding of how litter regulates slope erosion and provide a reference for effectively controlling soil erosion.  相似文献   

2.
A method for collecting suspended sediment samples has been developed that pumps a discharge-weighted volume of water from fixed depths at four to 40 locations across a river and separates the suspended sediment in the sample using a continuous-flow centrifuge. The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (> 63 μm) but to collect a representative sample of the suspended silt and clay sized particles (< 63 μm). The centrifuge separated the silt and clay sized particles (< 63 μm) into three fractions. Based on the average results of processing 17 samples from the Mississippi River and several of its large tributaries in 1990, about 10% of the silt and clay sized material was trapped in a centrifuge bowl-bottom sealing unit containing the nozzle and consisted of mostly medium and coarse silt from 16 to 63 μm. About 74% was retained on a Teflon liner in the centrifuge bowl and consisted of sizes from 0–1 to 63 μm. About 9% was discharged from the centrifuge in the effluent and was finer than 0–1 μm. About 7% was lost during the processes of removing the wet sediment fractions from the centrifuge, drying and weighing. The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (< 63 μm) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles.  相似文献   

3.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
《Continental Shelf Research》2007,27(3-4):489-505
Sediment accumulation over the past century on the continental shelf near the Po delta varies with distance from the most active distributary channels. Near the Pila and Goro distributaries, sediment accumulation is rapid (1–4 cm yr−1) and occurs in pulses. In these areas, the seabed is dominated by physical sedimentary structures that can be related to flood sedimentation. Between the two distributaries and in the southern portion of the dispersal system, sediment accumulation is slower (rates reach a minimum of 0.23 cm yr−1 at ∼50 km from the Pila mouth) and steady-state, reflecting more continuous dispersal of sediment during non-flood periods. Sedimentary strata in these locations are composed of finer (clayey silt), mottled sediment. The similarity in the spatial distribution of long-term (100-yr) sediment accumulation to deposition resulting from the 2000 flood event suggests that the Po shelf is flood-dominated.About half of the sediment delivered by the Po River on a 100-yr time scale can be accounted for in the seabed deposit within ∼50 km of the Pila mouth. The remaining sediment is likely transported southward by the prevailing circulation, and this sediment coalesces with inputs from the Apennine Rivers.  相似文献   

5.
Measurements are presented of the properties of suspended particulate matter (SPM) in the estuarine turbidity maximum (ETM) of the upper Humber and Ouse estuaries during transient, relatively low freshwater inflow conditions of September 1995. Very high concentrations of near-bed SPM (more than 100 g l−1) were observed in the low-salinity (less than 1), upper reaches. SPM within the ETM consisted largely of fine sediment (silt and clay) that existed as microfloc and macrofloc aggregates and individual particles. Primary sediment particles were very fine grained, and typically, about 20–30% was clay-sized at high water. The clay mineralogy was dominated by chlorite and illite. There was a pronounced increase in particle size in the tidal river, up-estuary of the ETM. The mean specific surface area (SSA) of near-bed SPM within the ETM was 22 m2 g−1 on a spring tide and 24 m2 g−1 on a neap tide. A tidal cycle of measurements within a near-bed, high concentration SPM layer during a very small neap tide gave a mean SSA of 26 m2 g−1. The percentage of silt and clay in surficial bed sediments along the main channel of the estuary varied strongly. The relatively low silt and clay percentage of surficial bed sediments (about 10–35%) within the ETM’s region of highest near-bed SPM concentrations and their low SSA values were in marked contrast to the overlying SPM. The loss on ignition (LOI) of near-bed SPM in the turbid reaches of the estuary was about 10%, compared with about 12% for surface SPM and more than 40% in the very low turbidity waters up-estuary of the ETM. Settling velocities of Humber–Ouse SPM, sampled in situ and measured using a settling column, maximized at 1.5 mm s−1 and exhibited hindered settling at higher SPM concentrations.  相似文献   

6.
We deployed bottom-mounted quadrapod equipped with acoustic Doppler current profiler (ADCP), acoustic Doppler velocimeter (ADV), and optical backscatter sensor (OBS) over two semidiurnal tidal cycles along the western coast of the Yellow Sea, China. In combination with shipboard profiling of CTD and LISST-100, we resolved the temporal and spatial distributions of tidal currents, turbulent kinetic energy (TKE), suspended sediment concentration (SSC) and particle size distributions. During the observations, tidal-induced bottom shear stress was the main stirring factor. However, weak tidal flow during the ebb phase was accompanied by two large SSC and median size events. The interactions of seiche-induced oscillations with weak ebb flow induced multiple flow reversals and provided a source of turbulence production, which stripped up the benthic fluff layers (only several millimeters) around the Jiaozhou Bay mouth. Several different methods for inferring mean suspended sediment settling velocity agreed well under peak currents, including estimates using LISST-based Stokes’ settling law, and ADCP-based Rouse profiles, ADV-based inertial-dissipation balance and Reynolds flux. Suspended particles in the study site can be roughly classified into two types according to settling behavior: a smaller, denser class consistent with silt and clay and a larger, less dense class consistent with loosely aggregated flocs. In the present work, we prove that acoustic approaches are robust in simultaneously and non-intrusively estimating hydrodynamics, SSC and settling velocities, which is especially applicable for studying sediment dynamics in tidal environments with moderate concentration levels.  相似文献   

7.
Sediment fences are often used to monitor hillslope erosion, but these can underestimate sediment yields due to overtopping of runoff and associated sediment. We modified four sediment fences to collect and measure the runoff and sediment that overtopped the fence in addition to the sediment deposited behind the fence. Specific objectives were to: (1) determine the catch efficiency of sediment fences measuring post-fire hillslope erosion; (2) assess particle sorting of sand, silt/clay, and organic matter from each hillslope through the sediment fence and subsequent runoff collection barrels; (3) evaluate how catch efficiency and particle size sorting relate to site and rainfall-runoff event characteristics; and (4) use runoff simulations to estimate sediment fence volumes for future post-fire monitoring. Catch efficiency ranged from 28 to 100% for events and 38 to 94% per site for the entire sampling season, indicating a relatively large underestimation of sediment yields by sediment fences. Most of the eroded sediment had similar proportions of sand and silt/clay as the hillslope soils, but the sediment behind the fence was significantly enriched in sand while the sediment that overtopped the fence was more strongly enriched in silt/clay. The sediment fences had capacities of 3 m3 for hillslopes of 0.19–0.43 ha, but simulations of runoff for 2- to 100-year storms indicate that the sediment fences would need a capacity of up to 240 m3 to store all of the runoff and associated sediment. More accurate measurements of sediment yields with sediment fences require either increasing the storage capacity of the sediment fence(s) to accommodate the expected volume of runoff and sediment, reducing the size of the contributing area, or directly measuring the runoff and sediment that overtop the fence. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
The entrainment of bottom deposits (silt and clay) into newly formed ice was investigated in the Amderma/Vaygach flaw lead in the southwestern Kara Sea, Siberian Arctic. Fine-grained bottom deposits and sea ice sediments (SIS) were analyzed by granulometry, scanning electron microscopy and X-ray diffractometry. On average, SIS contain by a factor of four times more silt than the shelf deposits (66.7% vs. 16.3%), and the SIS clay percentage is more than three-fold of the bottom value (31.2% vs. 9.1%). Sand-sized particles are significantly less abundant in SIS compared to bottom sediment (2.1% vs. 74.6%). The preferred entrainment of silt into ice is underpinned by the enhanced silt-to-clay-ratio in SIS compared to bottom deposits. Though silt is preferably entrained into SIS, no evidence was found for preferential ice-entrainment of any silt sub-fraction (coarse, medium or fine). However, sub-angular- and angular-discoidal silt particles are favorably entrained into local sea ice. Clay mineral assemblages in SIS and shelf surface sediments match very well revealing that no individual clay mineral is preferably enriched in SIS or reduced at the bottom. The general textural, compositional and statistical match of fine-grained shelf surface deposits and SIS proves that bottom sediment is the principle source for ice-entrained material in the study area. We propose e.g. wave action and thermohaline convection to take sediment particles upward from the bottom nepheloid layer into the well-mixed 10–40 m deep water column of the Amderma/Vaygach flaw lead, and the turbulent process of suspension freezing to bring sediment particles and frazil crystals into contact, finally leading to the formation of sediment-laden ice. The role of SIS entrainment and export for local/regional shelf erosion and coastal retreat is of minor importance in the SW Kara Sea compared to other circum-Arctic shelf seas. However, the characteristic clay mineral assemblage of local SIS and bottom deposits can help identify the origin of SIS both on regional and Arctic-wide scales.  相似文献   

9.
This study investigated the influence of the regional flow on the streambed vertical hydraulic conductivity (Kv) within the hyporheic zone in three stream reaches of the Weihe River in July 2016. The streambed Kv with two connected depths was investigated at each test reach. Based on the sediment characteristics, the three test reaches could be divided into three categories: a sandy streambed without continuous silt and clay layer, a sandy streambed with continuous silt and clay layer, and a silt–clay streambed. The results demonstrate that the streambed Kv mainly decreases with the depth at the sandy streambed (without continuous silt and clay layer) and increases with the depth at the other two test reaches. At the sandy streambed (with continuous silt and clay layer) where streambed Kv mainly decreases with the depth, the regional upward flux can suspend fine particles and enhance the pore spacing, resulting in the elevated Kv in the upper sediment layers. At another sandy streambed, the continuous silt and clay layer is the main factor that influences the vertical distribution of fine particles and streambed Kv. An increase in streambed Kv with the depth at the silt/clay streambed is attributed to the regional downward movement of water within the sediments that may lead to more fine particles deposited in the pores in the upper sediment layers. The streambed Kv is very close to the bank in the sandy streambed without continuous silt and clay layer and the channel centre in the other two test reaches. Differences in grain size distribution of the sediments at each test reach exercise a strong controlling influence on the streambed Kv. This study promotes the understanding of dynamics influencing the interactions between groundwater and surface water and provides guidelines to scientific water resources management for rivers.  相似文献   

10.
Sediment found in China’s Yangtze and Yellow River systems is characterized by large silt fractions. In contrast to sand and clay, sedimentation and erosion behaviour of silt and silt–clay–sand mixtures is relatively unknown. Therefore, settling and consolidation behaviour of silt-rich sediment from these river systems is analysed under laboratory conditions in specially designed settling columns. Results show that a transition in consolidation behaviour occurs around clay contents of about 10 %, which is in analogy with the transition from non-cohesive to cohesive erosion behaviour. Above this threshold, sediment mixtures consolidate in a cohesive way, whereas for smaller clay percentages only weak cohesive behaviour occurs. The settling behaviour of silt-rich sediment is found to be in analogy with granular material at concentration below 150 g/l. Above 150–200 g/l, the material settles in a hindered settling regime where segregation is limited or even prevented. The results indicate that for modelling purposes, multiple sediment fractions need to be assessed in order to produce accurate modelling results.  相似文献   

11.
以天津汉沽地区某挡土墙地基粉土为研究对象,首先对不同颗粒组成的粉土做固结不排水动三轴剪切试验,采用各向等压固结,周围压力等于100kPa。固结完成后在不排水条件下施加轴向激振力,试验波形为正弦波,振动频率1.0Hz,试验中以试样在周期剪切时轴向周期应变达到5%作为破坏标准,得出粉土的动强度受颗粒组成的影响。细颗粒含量越大,其动强度越小,黏粒含量为7.2%的粉土循环剪应力比CSR约为20.3%黏粒含量粉土的2倍。粉土的动强度可以用循环剪应力比和破坏振次建立的幂函数关系式较好地拟合。在剪切过程中,粉土的孔隙水压力一直没有达到所施加的围压数值,最终稳定在75%~85%围压之间。同时,试验还得出孔隙水压力的增长模式不能用统一的Seed模型拟合,孔压增长规律的影响因素较多。  相似文献   

12.
Wischmeier's soil erodibility factor K calculated for 10 surface soils in the Hornos area, S. Spain, is compared with 3 aspects of aggregate stability. A significant correlation is found with the percentage of particles < 100 μm after aggregate breakdown, which is used as a measure of the vulnerability of the soil to erosion by overland flow. No significant correlation exists with the number of water drops required to cause breakdown of the aggregates nor with the mean size of the shattered aggregates, both being aspects of the resistance of aggregates to splash erosion. Of the micromorphological and analytical soil properties explaining aggregate stability, only the clay and silt content and the number of closed voids are significantly correlated with the factor K. The aggregate stability of the investigated soils is mainly determined by soil properties inherited from the parent material; the stabilizing effect of pedological features is small.  相似文献   

13.
To evaluate the impact of slope length on sediment yield under different rainfall intensities and land use types on low hill gentle slope, the characteristics of sediment yield process were analyzed based on the field artificial rainfall simulation. For the study, grassland and capsicum slope were taken from Anji county of Zhejiang province, China. Results indicated that rainfall intensity had stronger influence than slope length on sediment yield in south region. For capsicum slope, sediment yield increased quickly with increasing slope length when rainfall intensity greater than 90 mm h–1. The slope length had no significant effect on sediment yield when rainfall intensity less than or equaled to 90 mm h–1. For grassland, data from experiments indicated that sediment yield increased slowly with increasing slope length under rainfall intensity less than 120 mm h–1. There was a decreasing tendency of sediment yield at 6 m slope length under all rainfall events. It was concluded from particle size analysis of erosional sediment that silt and clay particles <0.02 mm were always preferentially transported on both capsicum slope (silt 47.1%, clay 40.9%) and grassland (silt 38.3%, clay 35.9%). We hope these results are useful for soil and water conservation and land management.  相似文献   

14.
The sediment load of the Yangtze River (China) is decreasing because of construction of dams, of which the Three Gorges Dam (TGD) is the best known example. The rate of the decline in sediment load is well known, but changes in the sediment grain size distribution have not been given much attention. The TGD mostly traps sand and silt while clay is flushed through the reservoir. A large amount of sand is available in the Yangtze River downstream of the reservoir, and therefore the pre-dam sand concentration is not substantially reduced. The availability of silt on the Yangtze River bed is limited, and it is expected that most silt will be removed from the riverbed within one to two decades. In order to evaluate the impact of the change in grain size distribution on the tidal flats of the Yangtze Estuary, a highly schematized tidal flat model is setup. This model broadly reveals that the observed deposition rates are exceptionally large because of the high sediment concentration, the abundance of silt, the seasonal dominance of waves (shaping a concave profile), and the offshore tidal asymmetry. The model further suggests that deposition rates will be limitedly influenced by reductions in clay or fine silt but strongly impacted by reductions in median to coarse silt. The response of the downstream morphology to reservoir sedimentation therefore strongly depends on the type of trapped sediment. As a consequence, silt-dominated rivers, such as the Yangtze River and the Yellow River may be more strongly impacted than sand-dominated systems.  相似文献   

15.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Five wetlands of temporary-shallow, temporary-deep and permanent-deep types, falling in the inland, channel or stream and riverine drainage basins were studied for their sediment, chemical and textural composition. The content of clay was maximum in the inland type as against the higher content of silt and sand at the channel and riverine sites, respectively. Among the various sediment fractions only the silt particles were distributed along depth gradients. Clay particles were positively correlated with the phosphorus content only, while the organic carbon content was correlated with the levels of calcium and nitrogen in the sediments. Calcium was also positively related to phosphorus, while correlations between all other elements were insignificant. It is concluded that the hydrolytic regime is the major factor determining the nature of wetland sediments.  相似文献   

17.
Sediment resuspension is an important way for shallow lake internal pollution to interact with the overlying water column,and the pollution risks are reasonably related to the retention of resuspended sediment particles in overlying water.In the current study,the settling of resuspended sediment particles was comprehensively investigated under different disturbances using five urban lake sediments.The results show that the particle size distributions of resuspended sediment from different lakes exhibited similar variations during settling with disturbance,although varied settling times were observed under static conditions.During settling with and without disturbance,sediment particle sizes were mainly within 8-63μm at the initial stage,and were<8μm in the later stages of settling.Based on these settling characteristics,the sediment particle size was divided into sand(>63μm),silt(8-63μm),and very fine silt and clay(<8μm)fractions.Kinetic analysis suggested that sediment settling for different particle sizes could be well described by the first-and second-order kinetic equations,especially when settling was disturbed(r2=0.727-0.999).The retention of resuspended sediment could be enhanced as particle sizes decreased and disturbance intensities increased.Furthermore,a water elutriation method was successfully optimized,with separation efficiencies of 56.1%-83%,to separate sediment particles into the defined three particle size fractions.The chemical compositions of sediment were found to change with different particle sizes.Typically,calcium tended to form large-size sediment,while the total contents of aluminum,iron,magnesium,and manganese showed significantly negative correlations with sediment particle sizes(p<0.01)and tended to distribute in small-size particles(e.g.,<8μm).Overall,the sediment particle size related settling dynamics and physicochemical properties suggested the necessity on determining the pollution of resuspended sediment at different particle sizes for restoration of shallow lakes.  相似文献   

18.
The anthropogenic radionuclide 137Cs has been extensively utilized as a tracer of geomorphic processes in the northern hemisphere since its deposition during atmospheric testing of nuclear devices in the 1950s and 1960s. The distribution of bomb‐fallout 137Cs was measured on a sequence of coastal dune sands and soils at Pinery Provincial Park, on the coast of Lake Huron in southern Ontario, Canada. The depth distribution within the stabilized, developed soils inland reflected the relationship between clay content and the adsorption and immobilization of the radionuclide. However, the influence of soil organic matter, silt‐sized particles and vegetation cycling on the profile distribution could not be discounted. Within the geomorphically dynamic dune sands near the coast, there was a significant activity of 137Cs even though the sands were lacking in clay‐sized particles. Within a buried soil on the inland side of a large active dune blowout, the distribution of 137Cs with depth was useful as a stratigraphic marker of the rates of accumulation of sands at that position. Therefore 137Cs may be a useful alternative to erosion pins, sequential air photos and sediment traps in the monitoring of dune destabilization in coastal environments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Six stations along the Rhône River from the Rhône Glacier to Lake Geneva were sampled by continuous flow centrifuge for recovery of suspended sediment. The samples were taken four times in the year in both 1982 and 1983. In addition, the mouth of the river was sampled in a like manner every two weeks during 1982 until August 1983. Concentration of sediment and composition did not vary as a function of depth or location across the river. Concentrations varied in time and as a function of flow and samples showed both increasing concentration in suspension and an increase in the proportion of finer particles moving downstream from source to mouth. Only slight variations in texture could be observed down the river as a function of time and appeared to relate to freezing and melting of the Rhône and other headwater glaciers as the primary sediment source. Little variation was observed annually in the texture and composition of the sediment at the river mouth despite large changes in concentration between the high flow summer and low flow winter discharges. These findings are consistent with a well-mixed system in which the suspended sediments are directly related to the primary supply of material from the glaciers.  相似文献   

20.
During the autumn of 2000, large areas of England and Wales were affected by severe flooding, which caused widespread disruption and significant damage to property. This study attempts to determine the impact of these flood events on contaminated sediment dispersal and deposition in the River Swale catchment, Yorkshire, UK, where lead and zinc were extracted and processed in large quantities during the nineteenth century. Seventy samples of overbank and channel‐edge sediments were collected at 35 sites along the River Swale. Inductively coupled plasma‐mass spectrometry was used to measure contaminant metal concentrations in the 2000–63 µm (sand) and <63 µm (silt and clay) size fractions. In both the channel‐edge and overbank sediments collected from the upper and middle reaches of the River Swale, concentrations of lead, zinc and cadmium were found to exceed MAFF guidelines. Highest concentrations correspond to the input of contaminated material from intensively mined tributaries, and elevated levels can be observed 5–10 km downstream of these inputs. This indicates that the remobilization of contaminated material during major flood events is potentially a serious problem for activities such as agriculture that utilize the Swale floodplain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号