首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Sundvoll  B.T. Larsen   《Tectonophysics》1994,240(1-4):173-189
A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation.

Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305–310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300–305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.  相似文献   


2.
The pile of Permian continental basaltic rocks near Skien has a minimum thickness of 1 500 m, dipping 40g towards NE, consisting of several thin lava flows. Most flows are porphyric, though both tuffs and aphyric flows occur to a lesser extent. Amygdules are abundant and a characteristic feature. The flows in the lower 2/3 of the basalt pile are mainly classified as melanite-ankaramite; some in the middle part as melanite-nephelinite; and the upper 1/3 of the flows as basanite. The basaltic rocks evolved from an assumed olivine-nephelinitic magma at great depths principally by clinopyroxene crystal fractionation accompanied by later olivine and maybe melilite reactions at moderate pressure in minor shallower magma chambers.  相似文献   

3.
ABSTRACT

The early and middle Miocene andesitic lavas of the Sierra de Angangueo (MALSA) represent one of the most prominent landforms of intermediate magmatism in Central Mexico. In this paper, we present new petrological, geochemical, thermobarometric, and geochronological data in order to discuss the conditions of MALSA’s emplacement in the lithosphere.

MALSA comprises a voluminous eroded early Miocene andesitic structure, emplaced on a Mesozoic basement. MALSA shows a wide variety of textures, from glassy and aphanitic to porphyritic, mainly composed of plagioclase (An10-55), clinopyroxene (Wo60-65; En35-40), amphibole (Mg-hornblende/edenite), and rarely olivine (Fo75–86) or orthopyroxene (En72-80). Major and trace elements plots follow a typical calc-alkaline trend with relatively increasing fractionation.

The 87Sr/86Sr isotopic signatures range between 0.703343 and 0.704459 and εNd values from +1.37 to +4.84; apparently without a significant contribution of an old, thick, or highly radiogenic continental crust. Lead isotope values 206Pb/204Pb vary between 18.68 and 18.83, 207Pb/204Pb from 15.57 to 15.65, and 208Pb/204Pb from 38.39 to 38.67, suggesting contamination of magmas by juvenile crust. Thermodynamic calculations indicate equilibrium conditions at ≤900°C and ~2 kbar and an average log ?O2 ≈ ?10.

Ar–Ar and K–Ar dating carried out on whole rock, matrix, amphibole, and plagioclase phenocrysts yielded ages between 13.0 ± 0.5 and 23.9 ± 0.3 Ma. These dates indicate a series of pulses with maximum magmatic activity between 24 and 18 Ma.

The geochemical and petrologic data suggest partial melting processes in the lower or middle crust associated with possible magma mixing during its ascent; such a mechanism could explain a hybrid mantle-lower crust origin of this large volume of andesites. The MALSA, as well as the early to middle Miocene magmatism from Western Mexico, could represent two coeval and independent magmatic arcs prior to the present Trans-Mexican Volcanic Belt (TMVB) in Central Mexico.  相似文献   

4.
Geochemical, isotopic, and geochronologic data for exhumed rocks in the Woodlark Rift of Papua New Guinea (PNG) allow a tectonic link to be established with the Late Cretaceous Whitsunday Volcanic Province (WVP) of northeastern Australia. Most of the metamorphic rocks in the Woodlark Rift have Nd isotopic compositions (εNd = + 1.7 to + 6.2) similar to the Nd isotopic compositions of rocks in the WVP (εNd = + 1.3 to + 6.6; Ewart et al., 1992), and contain inherited zircons with 90 to 100 Ma U–Pb ages that overlap the timing of magmatism in the WVP. None of the metamorphic rocks in the Woodlark Rift have the highly evolved Hf and Nd isotopic compositions expected of ancient continental crust. Magmas were erupted in the WVP during the middle Cretaceous as eastern Gondwana was rifted apart. The protoliths of felsic and intermediate metamorphic rocks in the Woodlark Rift are interpreted to be related to the magmatic products produced during this Cretaceous rifting event. Some mafic metamorphic rocks exposed in the western Woodlark Rift (eclogites and amphibolites) are not related to the WVP and instead could have originated as basaltic lavas crystallized from mantle melts at (U)HP depths in the Late Cenozoic, or as fragments of Mesozoic aged oceanic lithosphere.Isotopic and elemental comparisons between basement gneisses and Quaternary felsic volcanic rocks demonstrate that felsic lavas in the D'Entrecasteaux Islands did not form solely from partial melting of metamorphic rocks during exhumation. Instead, the isotopic compositions and geochemistry of Quaternary felsic volcanic rocks indicate a significant contribution from the partial melting of the mantle in this region. When combined with geophysical data for the western Woodlark Rift, this suggests that future seafloor spreading will commence south of Fergusson Island, and west of the present-day active seafloor spreading rift tip.  相似文献   

5.
The Dineibit El-Qulieb Leucogranite exhibits most features of l-type granitoids (calc-alkaline affinity, relatively high Na2O, moderate values of Rb, Ba, LREE, Rb/Sr and low Rb/Ba with the presence of magnetite and titanite as the main accessories). On the other hand, they possess hyperaluminous (molar A/CNK = 1.22−1.43) and high normative corundum (∼ 5%), which are in contrast to typical l-type granitoids. The REE patterns are characterised by fractionated LREE and relatively flat HREE with pronounced negative Eu anomalies. The investigated rocks have low K/Rb and high Zr/Y ratios reflecting a typical mature continentalarc environment.The absence of recrystallised phases and the undepleted and flat HREE of the Dineibit El-Qulieb Leucogranite pattern argue against its formation by partial melting of crustal materials. Based on the petrological and geochemical features, the Dineibit El-Qulieb Leucogranite can be generated by fractional crystallisation of mafic magma. The Qulieb leucogranites are characterised by LILE enrichment, normative corundum-rich, strongly peraluminous compositions and associated with miarolitic cavities and pegmatitic patches suggesting the role of the aqueous fluids released from the downgoing slab during subduction. The main fractionating phases were hornblende, biotite, plagioclase and alkali feldspars. Based on the modelling of major elements, the least differentiated adamellite sample requires 91% crystal fractionation, mainly of hornblende, plagioclase, K-feldspar and biotite, from dioritic liquid. On the other hand, the most felsic investigated adamellite sample can be generated by 29% fractional crystallisation of plagioclase, K-feldspar and biotite from the most basic adamellite sample.  相似文献   

6.
7.
Extrusion temperatures for basaltic lavas in the Permo-Carboniferous Oslo Rift, estimated from whole rock major element compositions, are estimated to be 1270 to 1340°C. This means that magmatism during the Oslo rifting event was not associated with a large temperature anomaly in the underlying upper mantle. Partial melting is believed to be caused by a combination of crustal extension, a weak temperature anomaly in the underlying asthenosphere, and/or high fluid-contents in the mantle source region (“wet-spot”). Petrological and gcochemical data imply that large masses of cumulate rocks were deposited in the deep crust during the Oslo rifting event. The densities and seismic velocities (Vp) of these cumulate rocks are estimated to be 2.8–3.5 g/cm3 and 7.5–8.0 km/s. A rough estimate suggests that cumulus minerals alone account for a net transfer of at least 2 × 1017 kg of magmatic material from the mantle into the deep crust. In addition comes material representing

1. (a) cumulate minerals corresponding to eroded magmatic surface and subsurface rocks

2. (b) intercumulus material, and

3. (c) magmas crystallized to completion in the deep crust.

Estimates based exclusively on geophysical data tend to underestimate the true transfer of mass into the lower crust as gabbroic cumulate rocks, and melts crystallizing to completion in the lower crust have densities and seismic velocities similar to those of lower crustal wallrocks.  相似文献   


8.
BjФrn  T.  Larsen  Snorre  Olaussen  BjФrn  Sundvoll  Michel  Heeremans 《《幕》》2008,31(1):52-58
The Oslo Rift is the northernmost part of the Rotliegendes basin system in Europe. The rift was formed by lithospheric stretching north of the Tornquist fault system and is related tectonically and in time to the last phase of the Variscan orogeny. The main graben forming period in the Oslo Region began in Late Carboniferous, culminating some 20-30 Ma later with extensive volcanism and rifting, and later with uplift and emplacement of major batholiths. It ended with a final termination of intrusions in the Early Triassic, some 65 Ma after the tectonic and magmatic onset.
We divide the geological development of the rift into six stages. Sediments, even with marine incursions occur exclusively during the forerunner to rifting. The magmatic products in the Oslo Rift vary in composition and are unevenly distributed through the six stages along the length of the structure.  相似文献   

9.
Olivine clinopyroxenite xenoliths in the Oslo Rift,SE Norway   总被引:1,自引:0,他引:1  
Olivine clinopyroxenite xenoliths in a basalt flow at Krokskogen in the Oslo rift consist mainly of Al-Ti-rich clinopyroxene and alteration products after olivine (possibly also orthopyroxene). The clinopyroxene contains primary inclusions of Cr-Al-bearing titanomagnetite, pyrite and devitrified glass, and secondary fluid inclusions rich in CO2. On the basis of petrography, mineral compositions and bulk major and trace element chemistry, it is concluded that the xenoliths represent cumulates with about 5% trapped liquid, formed from a mildly alkaline basaltic magma. Microthermometrical analysis of secondary or pseudosecondary fluid inclusions give a minimum pressure of formation of 5.5 to 6 kbars, that is a depth greater than 16–17 km. The host lava has initial Nd=+4.16±0.17 and Sr=–5.50±0.26, which is believed to reflect the isotopic composition of the lithospheric mantle source region under south Norway in early Permian time. The isotopic character of the magma which gave rise to the xenoliths is preserved in clinopyroxenes which have Nd t =+1.9 to +2.6 and Sr t = –1.1 to –1.8. The isotopic differences between the host magma and the xenoliths reflect some degree of crustal contamination of the xenolith's parent magma.The xenoliths of this study represent an important source of information about the large masses of dense cumulates found at depth in the crust under the Oslo rift.  相似文献   

10.
N. L. Dobretsov 《Petrology》2010,18(1):84-106
Geological-petrological and geochemical data on subduction-related magmatism (including the volumes and compositions of the corresponding magmatic series) are compared to the results of experiments and numerical simulation. The subduction zone is subdivided into five depth sectors and volcanic zones I, II, and III: 1 is the accretionary wedge that controls the geodynamic stability of subduction; 2 is the sector of dehydration and fluid filtration; 3 is the zone of eclogitization and initial partial melting in the slab above which boninite volcanic zone I is formed during early stages; 4 is the main zone of melting of the sedimentary-basite layer and the development of volcanic zone II with the predominance of andesites; and 5 is the zone of higher degree melting, above which volcanic zone III (basaltic andesite and alkali basalt) is formed. The criterion of volcanism intensity, which was obtained within the scope of the melting model, is proportional to the subduction velocity and the thickness of the melting zone, and the distance between the groups of volcanics along the subduction zone is 75–100 km, at a thickness of the melting zone of 15–20 km. The calculated isotherm of 600°C, which controls the stability of serpentine and chlorite, is not identified at depth above 150 km, and this is confirmed by the composition and P-T conditions of the high-pressure rocks (containing diamond and coesite), which were brought from depths of 150–200 km in subduction zones. Seismic sections constructed with regard for the amplitude characteristics of seismic waves show two melting zones (“wet” melting at a depth of 100–200 km and “dry” melting at a depth of 150–200 km) and a complicated thermal structure of the suprasthenospheric wedge, which can include slant magma conduits. The mineralogical and geochemical features of arc magmatic series are formed at a decisive role of an H2O-CO2 fluid and an elevated oxidation potential. The predominant buffer minerals are as follows: garnet in the slab melting zone; magnetite, Ca-pyroxene, and amphibole in intermediate magmatic chambers; and amphibole, protoenstatite-bronzite (in place of olivine), and Cr-spinel (in place of magnetite) for boninite series generated in a “hot” asthenospheric wedge at interaction with fluids or water-rich melts. Actively disputable problems are the interactions scale of melts and fluids generated in a subduction zone with a “hot” mantle wedge, the possibility of transporting water-rich minerals deep into the mantle (to depths greater than 150 km), and the evolution of the scale at which young continental crust is generated by subduction melts.  相似文献   

11.
西藏高原冈底斯中新世(21~12Ma)侵位于冈底斯花岗岩岩基内。斑岩呈东西向断续带状展布(350km),南北向串珠排布(宽约50km),明显受NS裂谷和正断层控制。斑岩的主要岩石类型为花岗闪长斑岩、二长花岗斑岩、石英二长斑岩。斑岩高SiO2、Al2O3、K2O和低Y和HREE(Yb)含量;富集轻稀土元素(LREE)和大离子亲石元素(ULE),尤其富集Sr和K;缺乏Eu异常和/或具弱正异常;普遍具有较高的Sr/Y、(La/Yb)。比值及较低的Y/Yh比值。斑岩显示出明显的adakite地球化学特征,明显不同于冈底斯花岗岩基。对冈底斯岩带的构造-岩浆-热事件序列的综合分析揭示,斑岩是滞留在地幔的洋壳残片在花岗岩基大幅快速隆升后部分熔融的产物,熔融残余相为石榴石 角闪石 单斜辉石 含钛矿物组合,熔体在上升过程中与上覆交代地幔楔发生作用,使岩浆的K含量和Mg^#明显增高。高密度的熔融残留体榴辉岩或角闪榴辉岩沉入下伏地幔或软流圈,这可能导致了冈底斯岩带在20~14Ma期间的隆升。冈底斯中新世斑岩的时空分布厘定了西藏高原冈底斯带EW向伸展的初始时间大约在20Ma左右。高永丰等:冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义  相似文献   

12.
ABSTRACT Deeply buried 1.5 Ga Polish anorthosites, accessible only by bore holes, reveal diagnostic features of some massif-type anorthosites (polybarism, jotunitic parent magma), diapirically emplaced in the mid crust together with the rapakivi granites of the EW-trending Mazury complex, intruded along a major crustal discontinuity. Geochemical modelling and isotope data corroborate recent experimental work on the basaltic system in dry conditions: the source rock of the parental magma is a gabbronorite, necessarily lying in the lower crust. Since no Archaean crust is known in the region, high initial 188Os/187Os ratios for sulphide-oxide isochrons and negative εNd values are best accounted for by melting a ∼ 2.0 Ga mafic crust.  相似文献   

13.
The rate earth element chemistry of a large suite of samples from the Central American volcanic front has been determined to understand their petrogenesis. Different segments of the volcanic front are compared on the basis of their calculated source rare earth patterns as deduced from inverse modeling. The results yield a range in the extent of light rare earth enrichment of the source, as well as in source mineralogy. Moderateto-strong LREE enrichment and high modal garnet contents are observed for the sources of both Guatemala and central Costa Rica, whereas slight LREE depletion and little or no garnet occurs in the Nicaraguan source region. Although distinct source regions beneath each Central American segment are permitted by the modeling, it is more likely that the mantle wedge is broadly homogeneous but locally heterogeneous. Small volume, relatively enriched, garnet-bearing veins surrounded by a matrix of isotopically depleted mantle periodotite could exist throughout the mantle wedge. Apparently distinct sources occur due to the variation in partial melting beneath the different segments, controlled by the amount of subduction-generated flux per unit wedge volume, which in turn is a function of the dip of the subducted lithosphere.  相似文献   

14.
International Journal of Earth Sciences - We present the petrological investigation carried out of the seamounts located between water depths of 4300 and 5385 m in the Central Indian Ocean...  相似文献   

15.
Summary Since the Cenozoic, Ethiopia was affected by a widespread volcanic activity related to the geodynamic evolution of the Afar triple junction. The plateau building phase was followed by the formation of the Main Ethiopian Rift (MER) accompanied by a bimodal volcanic activity in both the inner parts of the rift and its shoulders. Outside the rift, a concurrent volcanic activity occurred mainly along transversal tectonic lineaments, the most important of which is the Yerer-Tullu Wellel Volcano-Tectonic Lineament (YTVL) developing for ∼500 km westward of Addis Abeba. Scattered Pliocene – Quaternary volcanoes are reported also inside the plateau such as those out cropping nearby Lake Tana. Here we present the result of a study on carefully screened mafic lavas outcropping in two sectors located off-axis the MER, namely, the YTVL and the southern part of Lake Tana; and in one sector located in the southern tip of the MER close to Megado, in the Sidamo region. The screened samples are petrographically fresh and have SiO2<52 wt.% and MgO>4 wt.%, to minimise crystal fractionation effects. Most of the samples belong to the Late Miocene – Quaternary volcanic activity of the East African Rift System (EARS), although a number of samples along the YTVL are representative of the Late Eocene – Early Miocene Ethiopian Volcanic Plateau flood basalts. The selected mafic lavas offer the opportunity to assess the geochemical diversity, if any, of the subcontinental mantle domains along the MER (Megado and the easternmost part of the YTVL) and in sectors far away from the MER (YTVL and Lake Tana). The samples have a wide compositional range: from basanite to alkali basalt, hy-normative basalt, qz-normative basalt, basaltic andesite, hawaiite, trachybasalt, and trachyandesite. The major and trace element characteristics of the mafic lavas demonstrate an origin from a relatively fertile and trace element enriched lithospheric mantle at pressure variable from ∼2.0 to 3.5 GPa. Moreover, systematic variations in K/Nb, Ba/Nb, and Ba/Rb demand for the contribution of trace amounts of phlogopite to melt production. The geochemical signature coupled with the geographical distribution of the Late Miocene – Quaternary samples along the YTVL (∼500 km) and the Lake Tana and Megado sectors set constraints on a relatively homogenous lateral continuity of the deeper lithospheric mantle domains (∼2–3.5 GPa). On the other hand, the trace element characteristics of the Ethiopian Volcanic Plateau samples along the YTVL, demand for a chromatographic process en route to the surface and indicate a shallower lithospheric mantle domain (<2 GPa) with a different geochemical signature. Overall, the selected mafic lavas provide evidence for vertically zoned lithospheric mantle domains: the shallower domain (<2 GPa) consists of an enriched mantle component with a geochemical signature similar to continental crust material (EM II), whilst the deeper domain (∼2–3.5 GPa) consists of an enriched component similar to the average composition of the subcontinental lithospheric mantle (SCLM). Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

16.
A schematic but quantitative geochemical, petrological, model of the sub-marine lithosphere and its genesis is given. With this model we calculate numerically, a priori, the geophysical characteristics of the lithosphere, its acoustic properties, density, oceanic heat flow and ocean bottom topography. Comparison with observational data for these characteristics shows good agreement. Particular attention is given to anomalous upper mantle in the vicinity of spreading centres. Compressional and shear wave velocity distributions are given in tabular form for the submarine lithosphere as a function of age. Comparison between observations for Vp, Vs and the calculated acoustic properties suggests that the lower marine lithosphere is anisotropic. Possible thickening of layer 3 with age is discussed. Melt distribution in the ridge axial region has been evaluated. All calculations were done for a plate velocity of 1 cm y−1.  相似文献   

17.
During the late Paleozoic Oslo rifting event, the SW part of the Baltic Shield was penetrated by mantle-derived magmas from a depleted lithospheric or sublithospheric source. Along the way to their final emplacement, these magmas may have interacted with a heterogeneous continental crust, consisting of a mosaic of continental terranes, each with its unique composition and internal crustal history. Information on radiogenic isotope ratios and trace element distributions in the Precambrian terranes surrounding the rift can be used to define characteristic crustal components. These components may be used as endmembers in petrogenetic modelling of the Oslo Rift magmatic system. Based on available data, six endmember components can be identified, and (semi) quantitatively characterized in terms of Sr, Nd and Pb isotopes and selected trace elements. Data on the distribution of rock-types along the rift flanks allow estimates to be made of the relative importance of the components in different parts of the rift. Combining these data with petrological information may allow a realistic understanding of crust–magma interaction in the Oslo Rift magmatic system.  相似文献   

18.
Four regressive sequences are present in the opaline rocks and related deposits of the Miocene Intermediate Unit of the Madrid Basin. The sequences consist of silty mudstones and argillaceous opals, separated by transitional facies. The silty mudstone consists mainly of dioctahedral smectites, whereas the argillaceous opal is principally opal-CT and variable amounts of sepiolite. In the transitional facies, lamina of dioctahedral smectite co-exist with neoformed opal-CT and sepiolite. Petrological and geochemical features (major, trace and REE elements) indicate that the opaline levels and the transitional facies are related and are a consequence of silcrete formation in an argillaceous playa deposit. The isocon method was used to calculate changes in element concentration associated with silcrete formation. The geochemical data suggest silicification in an arid environment. The silcrete profile occurs four times, possibly as a result of highstand–lowstand fluctuations of the lake level caused by climatic changes. Structures and cements in the silcretes indicate that, although silicification may have commenced at the top of a groundwater table, it continued in the unsaturated zone above the water table.  相似文献   

19.
20.
Major and trace element as well as Sr–Nd isotopic compositions of mid-Cretaceous lavas across western Shandong Province, China have been studied. These lavas can be generally divided into southern Shandong group (including Pingyi and Mengyin) and northern Shandong group (including Laiwu and Zouping) based on their geochemistry. The southern group lavas are characterized by extreme enrichment in LREE, large ion lithophile elements (LILE), and depletion in HFSE along with EMII-like Sr–Nd isotopic compositions, suggesting that the crustal involvements play a significant role in their petrogenesis. Comparing studies with Fangcheng basalts reveal that the Triassic continent–continent collision between the Yangtze craton (YC) and the North China craton (NCC), and subsequent extensive modification of the sub-continental lithospheric mantle (SCLM) beneath the south part of the NCC by silicic melts released from the subducted Yangtze lower crust, formed an enriched lithospheric mantle which was the source of the southern Shandong group lavas. In contrast, the northern Shandong group lavas are mildly enriched in LREE and LILE relative to those of the southern group lavas. The isotope compositions are also distinctive in that the Sr isotopic ratios are very low. Available geochemical evidence and comparing studies with spatially closed related mafic intrusions suggest that the SCLM feeding the northern group lavas seems to be linked to carbonatitic metasomatism and changed modal proportion of phlogopite and clinopyroxene in the mantle rather than subduction-related modifications. The contrasting geochemical characters of the mid-Cretaceous lavas across western Shangdong suggest that the SCLM of the NCC is spatially heterogeneous in Mesozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号