首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between oil and water in reservoirs with low and ultra-low permeability is very complicated. Gravitational separation of oil and water is not obvious. Normal reservoirs are located in depression and structural high spot, oil and water transitions are located in their middle. Stagnation is the key fact of oil-forming reservoir in the axis of a syncline based on the research of oil, gas and water migration manner, dynamics and non-Darcy flow in the Songliao basin. In low and ultra-low permeable reservoir, gas and water migrate easily through pore throats because their molecules are generally smaller than the pore throats; but the minimum diameter of oil droplets is larger than pore throats and they must be deformed to go through. Thus, gas and water migrate in advance of oil, and oil droplets remain behind. Pressure differential and the buoyancy force in a syncline reservoir are a main fluid driving force; and capillary force is the main resistance to flow. When the dynamics force is less than resistance, oil is immobile. When the buoyancy force is less than the capillary force, a gravitational separation of oil and water does not occur. The reservoir in the mature source rock of a syncline area with the low and ul- tra-low permeability belongs to an unconventional petroleum reservoir.  相似文献   

2.
为了研究垂直上升管中油气水三相流流动特性,本文利用纵向多极阵列电导式传感器(VMEA)和阵列电导探针组合测量方法在内径为125 mm多相流流动环中采集了油气水三相流电导波动信号,在定义6种油气水三相流流型基础上,绘制了4种油水混合液量下油气水三相流流型转换图,分析了含油率对流型转化及气相流速对油水相态逆转的影响.对水为连续相的5种流型VMEA传感器波动信号进行了多尺度熵分析,研究结果表明:含油率增加可使水包油段塞流在较低气相表观速度下产生;较低流速下的油水相态逆转可发生在油液比为0.9左右,气相流速增加使得逆转点向含油率低的方向偏移;多尺度熵细节可以刻画油气水三相流非线性动力学特性,而低尺度的多尺度熵变化率敏感地反映流型转变,是划分油气水三相流流型的有效准则.多尺度熵有助于理解油气水三相流流型非线性动力学特征.  相似文献   

3.
A weakly nonlinear model is used to examine the mean transverse circulation (cross-isobath) driven by tidal-induced buoyancy flux. The mean Eulerian flows driven by both the barotropic and baroclinic tide are presented for a semi-infinite wedge. The mean flow driven by the barotropic tide is significant only near the apex where the thickness of the frictional boundary layer is comparable to the water depth. The mean flow there is characterized by a single-cell circulation with offshore flow near the bottom, and its magnitude can reach a few percentage or a significant fraction of the tidal velocity in oceanic applications. The mean flow driven by the baroclinic tide, on the other hand, is characterized by pairs of half-open (on the seaward side) counter-rotating cells, the number of which equals the vertical mode number. For a baroclinic tide propagating onshore, the mean flow near the top and bottom surfaces is always directed offshore and its magnitude can reach a large fraction of the tidal velocity. Taken together, the model thus predicts a mean offshore flow near the bottom while higher up in the water column the mean flow direction is less definite due to the contribution from different tidal components. The model results are consistent with some current measurements over the Georges Bank.  相似文献   

4.
Development and verification of deep-water blowout models   总被引:2,自引:0,他引:2  
Modeling of deep-water releases of gas and oil involves conventional plume theory in combination with thermodynamics and mass transfer calculations. The discharges can be understood in terms of multiphase plumes, where gas bubbles and oil droplets may separate from the water phase of the plume and rise to the surface independently. The gas may dissolve in the ambient water and/or form gas hydrates––a solid state of water resembling ice. All these processes will tend to deprive the plume as such of buoyancy, and in stratified water the plume rise will soon terminate. Slick formation will be governed by the surfacing of individual oil droplets in a depth and time variable current. This situation differs from the conditions observed during oil-and-gas blowouts in shallow and moderate water depths. In such cases, the bubble plume has been observed to rise to the surface and form a strong radial flow that contributes to a rapid spreading of the surfacing oil. The theories and behaviors involved in deepwater blowout cases are reviewed and compared to those for the shallow water blowout cases.  相似文献   

5.
《Advances in water resources》2005,28(10):1032-1039
An existing capillarity correction for free surface groundwater flow as modelled by the Boussinesq equation is re-investigated. Existing solutions, based on the shallow flow expansion, have considered only the zeroth-order approximation. Here, a second-order capillarity correction to tide-induced watertable fluctuations in a coastal aquifer adjacent to a sloping beach is derived. A new definition of the capillarity correction is proposed for small capillary fringes, and a simplified solution is derived. Comparisons of the two models show that the simplified model can be used in most cases. The significant effects of higher-order capillarity corrections on tidal fluctuations in a sloping beach are also demonstrated.  相似文献   

6.
In a phreatic aquifer, fresh water is withdrawn by pumping from a recovery well. As is the case here, the interfacial surface (air/water) is typically assumed to be a sharp boundary between the regions occupied by each fluid. The pumping efficiency depends on the method by which the fluid is withdrawn. We consider the efficiency of both continuous and pulsed pumping. The maximum steady pumping rate, above which the undesired fluid will break through into the well, is defined as critical pumping rate. This critical rate can be determined analytically using an existing solution based on the hodograph method, while a Boundary Element Method is applied to examine a high flow rate, pulsed pumping strategy in an attempt to achieve more rapid withdrawal. A modified kinematic interface condition, which incorporates the effect of capillarity, is used to simulate the fluid response of pumping. It is found that capillarity influences significantly the relationship between the pumping frequency and the fluid response. A Hele-Shaw model is set up for experimental verification of the analytical and numerical solutions in steady and unsteady cases for pumping of a phreatic aquifer. When capillarity is included in the numerical model, close agreement is found in the computed and observed phreatic surfaces. The same model without capillarity predicts the magnitude of the free surface fluctuation induced by the pulsed pumping, although the phase of the fluctuation is incorrect.  相似文献   

7.
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.  相似文献   

8.
A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.  相似文献   

9.
The generation of SH-type waves due to sudden application of a stress discontinuity which moves after creation at the sandy layer of finite thickness overlying an isotropic and inhomogeneous elastic half-space is considered. The displacements are obtained in exact form by the method due to Cagniard modified by De Hoop. The numerical calculations are obtained. Two cases of shearing stress discontinuities are considered for different sandiness parameters. The graphs are drawn to show the effect of sandiness in the displacement components.  相似文献   

10.
We present an upscaled model for the vertical migration of a CO2 plume through a vertical column filled with a periodic layered porous medium. This model may describe the vertical migration of a CO2 plume in a perfectly layered horizontal aquifer. Capillarity and buoyancy are taken into account and semi-explicit upscaled flux functions are proposed in the two following cases: (i) capillarity is the main driving force and (ii) buoyancy is the only driving force. In both cases, we show that the upscaled buoyant flux is a bell-shaped function of the saturation, as in the case of a homogeneous porous medium. In the capillary-dominant case, we show that the upscaled buoyant flux is the harmonic mean of the buoyant fluxes in each layer. The upscaled saturation is governed by the continuity of the capillary pressure at the interface between layers. In the capillary-free case, the upscaled buoyant flux and upscaled saturation are determined by the flux continuity condition at the interface. As the flux is not continuous over the entire range of saturation, the upscaled saturation is only defined where continuity is verified, i.e. in two saturation domains. As a consequence, the upscaled buoyant flux is described by a piecewise continuous function. Two analytical approximations of this flux are proposed and this capillary-free upscaled model is validated for two cases of heterogeneity. Upscaled and cell averaged saturations are in good agreement. Furthermore, the proposed analytical upscaled fluxes provide satisfactory approximations as long as the saturation set at the inlet of the column is in a range where analytical and numerical upscaled fluxes are close.  相似文献   

11.
Experiments designed to elucidate the pore-scale mechanisms of the dissolution of a residual non-aqueous phase liquid (NAPL), trapped in the form of ganglia within a porous medium, are discussed. These experiments were conducted using transparent glass micromodels with controlled pore geometry, so that the evolution of the size and shape of individual NAPL ganglia and, hence, the pore-scale mass transfer rates and mass transfer coefficients could be determined by image analysis. The micromodel design permitted reasonably accurate control of the pore water velocity, so that the mass transfer coefficients could be correlated in terms of a local (pore-scale) Peclet number. A simple mathematical model, incorporating convection and diffusion in a slit geometry was developed and used successfully to predict the observed mass transfer rates. For the case of non-wetting NAPL ganglia, water flow through the corners in the pore walls was seen to control the rate of NAPL dissolution, as recently postulated by Dillard and Blunt [Water Resour. Res. 36 (2000) 439–454]. Break-up of doublet non-wetting phase ganglia into singlet ganglia by snap-off in pore throats was also observed, confirming the interplay between capillarity and mass transfer. Additionally, the effect of wettability on dissolution mass transfer was demonstrated. Under conditions of preferential NAPL wettability, mass transfer from NAPL films covering the solid surfaces was seen to control the dissolution process. Supply of NAPL from the trapped ganglia to these films by capillary flow along pore corners was observed to result in a sequence of pore drainage events that increase the interfacial area for mass transfer. These observations provide new experimental evidence for the role of capillarity, wettability and corner flow on NAPL ganglia dissolution.  相似文献   

12.
The paper presents a rheological model for gravity driven granular flows saturated with water. The model adopts the kinetic theory for the collisional regime, which is dominant near the free surface, while for the frictional regime a specific model is proposed, which matches the Coulombian condition at the boundary with the loose static bed. The solution for the frictional regime is based on the observation that the frictional and the collisional regimes are not stratified but coexist across the flow depth.The model is able to predict the distribution along the depth of velocity, concentration, granular temperature, shear and normal stresses. In particular, it is possible to discriminate between the collisional and the frictional components of the normal and shear stresses.The results of the model are compared with the data of a laboratory investigation on a steady, uniform, highly concentrated saturated granular flow, composed of spheres with a uniform diameter of 6 mm.Another important issue addressed in the paper concerns the balances of the kinetic energy of the granular phase. The model is able to describe the mechanisms of production, diffusion and dissipation of kinetic energy, relevant to both the mean component of the flow and the fluctuating component (i.e., the collisional component). Also in this case the comparison with the experimental data is reasonably good. Near the static loose bed, the model predicts that the flux of the diffused fluctuating energy exceeds an order of magnitude the locally dissipated flux of fluctuating energy. This suggests that the motion of the grains, even at concentrations close to that of packing, is always accompanied by a certain degree of granular temperature.  相似文献   

13.
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China’s onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.  相似文献   

14.
三相流动是油田开发动态监测中常见而又难于解决的问题.目前多数研究者把油气水三相流动看作气液两相流动处理,即忽略油水之间的差异.三相流动中流型变化很复杂,在实验的基础上,对井中流体的流型进行了分析研究,建立了三相流动中流型变化图版,可以对井下流体流型进行合理的识别与判断.  相似文献   

15.
The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.  相似文献   

16.
Abstract

A unified analysis is given of the critical conditions for the onset of stratification due to either a vertical or a horizontal buoyancy flux, with tidal or wind stirring.

The critical conditions for the onset of stratification with a horizontal buoyancy flux are found to be of the form of ratios of the tidal slope, or wind setup, to the equivalent surface slope due to the lateral density gradient. These ratios, which are easily determined from sea data, indicate that the profiles of critical flux Richardson Number, averaged over the stirring cycle, are similar to those inferred from the laboratory experiments of Hopfinger and Linden (1982) in which there is zero mean shear turbulence with a stabilising buoyancy flux, and also that the efficiency for the conversion of kinetic energy to potential energy for tidal stirring is similar to that for wind stirring.

The observed much greater efficiency for wind stirring, compared with tidal stirring with a vertical buoyancy flux, is also consistent with the existence of flux Richardson Number profiles in the sea similar to those occurring in the corresponding laboratory experiments. Using the solution of the turbulent kinetic energy equation for the water column, the relative importance of the production of turbulent kinetic energy, and its diffusion by turbulence are assessed, and the critical conditions for the onset of stratification with a vertical buoyancy flux are shown to reduce the classical Simpson—Hunter form.  相似文献   

17.
首先以Lorenz混沌方程产生的非线性时间序列为例,讨论了在不同时间序列长度下各种延迟时间算法对噪声的适用性.研究发现,采用C_C算法计算延迟时间的鲁棒性强.在此基础上,给出了垂直上升管中气水两相流电导波动信号混沌表征结果,发现在较低水相表观速度时,随着气相表观速度增加,泡状流及混状流动力学特性变得愈加复杂,而段塞流动力学特性受液相表观速度影响较大;在较高水相表观速度时,随着气相表观速度增加,当流型从泡状流向段塞流转变时,气液两相流动力学特性变得相对简单.但是,由于受液相湍流作用影响,段塞流的动力学特性表现出了涨落现象,呈现不稳定性,当流型从段塞流向混状流转变时,气液两相流动力学特性则变得愈加复杂.研究结果表明:基于电导波动信号的混沌分析可以较好地表征气液两相流流型变化,是理解流型转变机理及其动力学演变特性的有用工具.  相似文献   

18.
A Model for Deepwater Oil/Gas Blowouts   总被引:1,自引:0,他引:1  
When gas is released in deepwater, the high pressure and low temperature can convert the gases into hydrates, which are buoyant. As these hydrates travel upwards they will encounter regions of lower pressure and can decompose into free gas. The presence or absence of hydrates has a significant impact on the behaviour of the jet/plume due to the alteration of the buoyancy. The free gas may dissolve in water. This paper describes a computer model developed to simulate the behaviour of oil and gas released from deepwater locations in the ocean. The model integrates the hydrodynamics and thermodynamics of the jet/plume with kinetics and thermodynamics of hydrate formation/decomposition. Model formulation and comparison of results with laboratory data for hydrates is presented. Scenario simulations show the behaviour of oil/gas under different deepwater conditions.  相似文献   

19.
We present 9 bottom222Rn profiles measured from the western and southern Indian Ocean during the 1977–1978 GEOSECS expedition. These profiles can be grouped into three cypes: one-layer, two-layer, and irregular types. The one-layer profiles with quasi-exponential distributions allow one to estimate the apparent vertical eddy diffusivity,Kv, with a simple model. The two-layer profiles show that there is a benthic boundary layer of the order of 50–100 m in which the excess222Rn distribution shows a vertical gradient much smaller than that of the layer immediately above. Within the boundary layer, the STD potential temperature (θ) and density(σ4) profiles are practically constant, and theKv values are of the order of 1000 cm2/s. The STD profiles for the water column above the boundary layer show gradients of increasing stability, and theKv values are of the order of 100 cm2/s. Modeling of the Rn data in the water column above the boundary layer indicates that there is a transition layer which effectively reduces the penetration of excess Rn from the benthic boundary layer into the upper layer.Sarmiento et al. [10] have shown that the buoyancy gradient or stability is inversely correlated with the apparent vertical eddy diffusivity, and the resulting buoyancy flux is fairly uniform, ranging from 1 to 14 × 10?6 cm2/s3 in the Atlantic and Pacific Oceans. However, Sarmiento et al. [11] show that a much higher buoyancy flux is associated with an intensified flow of the bottom water through a passage. In the Indian Ocean basins, we have found that the buoyancy flux has a comparable range (3–14 × 10?6 cm2/s3), except for a couple of stations where both stability and apparent vertical diffusivity are higher, resulting in a much higher buoyancy flux, probably indicative of rapid bottom water flow.  相似文献   

20.
It is suggested that the gross mean vertical structure of the undisturbed tropical atmosphere may be understood in terms of convective boundary layers driven in different ways and on different time scales by the evaporation of water from the sea surface. The mixed layer on a short time scale is driven partly by the buoyancy produced by the light weight of the water vapor; the trade cumulus layer on an intermediate time scale by the buoyancy (but not heating) produced by the condensation of the water vapor in shallow trade cumulus clouds; and the troposphere itself on a long time scale by the buoyancyand heating produced by the condensation of the water vapor in the deep cumulonimbus clouds.May 1985This paper was issued as a Harvard University report in 1974. For this version only Section 5 has been rewritten. There has been sufficient interest in this work over the years to warrant making it more widely available through the open literature.Contribution No. 783 from NOAA/Pacific Marine Environmental Laboratory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号