首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We study numerically the asymmetric periodic orbits which emanate from the triangular equilibrium points of the restricted three-body problem under the assumption that the angular velocity ω varies and for the Sun–Jupiter mass distribution. The symmetric periodic orbits emanating from the collinear Lagrangian point L 3, which are related to them, are also examined. The analytic determination of the initial conditions of the long- and short-period Trojan families around the equilibrium points, is given. The corresponding families were examined, for a combination of the mass ratio and the angular velocity (case of equal eigenfrequencies), and also for the critical value ω = 2
, at which the triangular equilibria disappear by coalescing with the inner collinear equilibrium point L 1. We also compute the horizontal and the vertical stability of these families for the angular velocity parameter ω under consideration. Series of horizontal–critical periodic orbits of the short-Trojan families with the angular velocity ω and the mass ratio μ as parameters, are given.  相似文献   

2.
We show that the overall densityg() of asymptotic acoustic frequencies of a star obeys a Weyl lawg() D–1, whereD is the dimensionality of the oscillating stellar configuration. For realistic stars with a finite non-zero surface sound speed,D is equal to the actual dimensionality of the star,D=3. For formal models with a vanishing sound velocity at the surface, heuristic arguments lead to a dimensionality parameterD=4.5. The empirical frequencies of Eddington's standard model are found to be consistent with the latter distribution, with reasonable agreement already occurring in the low-frequency range > i 2× fundamental radial mode. We argue that real stars obey this 3.5-power law in some finite frequency interval i << f , f being a very high frequency critically depending on the surface sound velocity, while the full asymptotic law, withD=3, holds for > f .  相似文献   

3.
In this paper a method is proposed for computing the equilibrium structures and various other observable physical parameters of the primary components of stars in binary systems assuming that the primary is more massive than the secondary and is rotating differentially about its axis. Kippenhahn and Thomas averaging approach (1970) is used in a manner earlier used by Mohan, Saxena and Agarwal (1990) to incorporate the rotational and tidal effects in the equations of stellar structure. Explicit expressions for the distortional terms appearing in the stellar structure equations have been obtained by assuming a general law of differential rotation of the typeω2 = b 0+b 1 s 2+b 2 s 4, where ω is the angular velocity of rotation of a fluid element in the star at a distance s from the axis of rotation, and b 0, b 1, b 2 are suitably chosen numerical constants. The expressions incorporate the effects of differential rotation and tidal distortions up to second order terms. The use of the proposed method has been illustrated by applying it to obtain the structures and observable parameters of certain differentially rotating primary components of the binary stars assuming the primary components to have polytropic structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Following a similar discussion given earlier for the solar case (De Jager, 1972) we compute in this paper spectral line profiles for the spatial wavelengths in which a stellar motion field can be decomposed, and thereafter the macro-and micro-turbulent filter functionsf M(k) andf (k), where is the optical scale height andf 2(k) dk the fraction of the energy of the turbulent motions between wavenumbersk andk+dk of the spectrum of turbulence that contributes to either kind of turbulence. If micro-and macro-turbulent velocity components are known for a certain star, and if the spectrum of turbulence is sharp enough, the ratiof M/f would enable one to derive the average size of the turbulent elements in the star's atmosphere. The computations apply to weak lines in idealized stellar atmospheres, and refer to two cases: isotropic turbulence, and radial pulsations. These filters can be suitably used in a diagnostic method for the analysis of the motion field in the solar and stellar atmospheres. Some examples of applications to stars of very different kinds are given.  相似文献   

5.
The first photoelectric light curve of the eclipsing binary system BW Aqr (F71V+F81V;P=6d.7;V=10 m .31), discovered by Miss Leavitt at the beginning of the century, was obtained. The photometric elements were detemined. The components of this system are considerably evolved stars: the age of the system is about 2×109 yr. It follows from the photometric data that the secondary component should have greater mass than the primary one The zero-age spectral classes of components were F2V and F1V. The system has an elliptical orbit with the eccentricitye=0.18. The angular rate of the apsidal motion (obs = 0.070 deg yr–1) and the corresponding value of the apsidal parameterk 2=0.0090 (the relativistic term included) were found. The derived valuek 2 exceeds by more than a factor of 2 the theoretical coefficient obtained from the modern theory of internal structure of stars with moderate masses .  相似文献   

6.
Analytical techniques are employed to demonstrate certain invariant properties of families of moon-to-earth trajectories. The analytical expressions which demonstrate these properties have been derived from an earlier analytical solution of the restricted three-body problem which was developed by the method of matched asymptotic expansions. These expressions are given explicitly to orderµ 1/2 where is the dimensionless mass of the moon. It is also shown that the inclusion of higher order corrections does not affect the nature of the invariant properties but only increases the accuracy of the analytic expressions.The results are compared with the work of Hoelker, Braud, and Herring who first discovered invariant properties of earth-to-moon trajectories by exact numerical integration of the equations of motion. (Similar properties for moon-to-earth trajectories follow from the principle of reflection). In each instance the analytical expressions result in properties which are equivalent, to orderµ 1/2, with those found by numerical integration. Some quantitative comparisons are presented which show the analytical expressions to be quite accurate for calculating particular geometrical characteristics.

Nomenclature

Orbital Elements near the Moon energy - angular momentum - semi-major axis - eccentricity - inclination - argument of node - argument of pericynthion Orbital Elements near the Earth h e energy - l e angular momentum - i inclination - argument of node - argument of perigee - t f time of flight Other symbols parameters used in matehing - U a function of the energy near the earth - a function of the angular momentum near the earth - r p perigee radius - perincynthion radius - radius at node near moon - true anomaly of node near moon - initial angle between node near moon and earth-moon line - a function ofU, , andi - earth phase angle - dimensionless mass of the moon - U 0, U1 U=U 0+U 1 - i 0, i1/2, i1 i=i 0+µ 1/2 i 1/2+µ i 1 - 0, 1/2, 1 = 0+µ 1/2 i 1/2+µ i 1 - p longitude of vertex line - n latitude of vertex line - R o ,S o ,N o functions ofU 0 and - a function ofU 0, and   相似文献   

7.
Individual tidal torque λ 2,E 2 and apsidal-motion k 2 constants were calculated for 112 close eclipsing binaries (CEBs) with Detached components belonging to the Main Sequence (DMS-type) from the catalogue by Svechnikov and Perevozkina (Catalogue of orbital elements, masses and luminosities of variable stars of DMS-type and some results of its statistical treatment, Ural State University Press, Yekaterinburg, pp. 1–5, 1999) and for 95 detached binaries taken from the catalogue by Torres et al. (Astron. Astrophys. Rev. 18:67, 2010) on the base of theoretical evolutionary stellar models including tidal torque constants by Claret (Astron. Astrophys. 424:919, 2004). A method of the inversion of model track grid into isochrones was formulated as a complex interpolation procedure for DMS-binaries data. Sets of isochrones were computed in k 2M, k 2R, λ 2M, λ 2R, E 2M, and E 2R planes. Calculated tidal torque constants allow to test stellar structure theory by comparing observed and estimated values of apsidal motion period and analyzing the correlation between timescales of synchronization, circularization, magnetic braking, as well as nuclear burning of DMS-components.  相似文献   

8.
The stability of the origin of an autonomous Hamiltonian system is investigated when the system possesses a third or fourth-order resonance.H 2, the quadratic part ofH isH 2=n i=1 i J i and the resonance condition is n i=1 k i i where thek 0,i = 1, 2, ...,n are the natural or fundamental frequencies. It is shown that the only case in which the origin can be unstable is ifk i0,i=1,2,...,n. The condition for instability is then given in terms of the coefficients of the higher order terms in the Hamiltonian. The transfer of energy between modes is also investigated when a near-resonant condition exists.  相似文献   

9.
Pre-Main-Sequence stars with masses between 2 and 5 M (Herbig Ae/Be stars) have radiative subphotospheric envelopes. However, they possess strong stellar winds and show definite signs of activity which could be linked to surface magnetic field. Therefore, they must lose angular momentum at a significant rate.We investigate the effect of such angular momentum losses on the internal structure of these stars, and on the distribution of angular velocity inside them. This paper presents a preliminary analysis guided by an analogy with laboratory and geophysical fluids. We propose that the friction exerted at the stellar surface by the angular momentum losses produces a mixed layer below the surface, separated from the unperturbed interior by an interface. Using scaling laws established by experimental studies of sheared stratified fluids, we discuss a simplified model for the evolution of the mixed layer.Although this model is still too preliminary to allow quantitative predictions, we show that for a reasonable choice of parameters, the mixed layer penetrates into the stellar interior on a time-scale of 106 years, comparable to the Kelvin time-scale for the Herbig Ae/Be stars.  相似文献   

10.
In the present paper we have considered the problem of determining the equilibrium structure of differentially rotating stars in which the angular velocity of rotation varies both along the axis of rotation and in directions perpendicular to it. For this purpose, a generalized law of differential rotation of the type 2 =b 0+b 1 s 2+b 2 s 4+b 3 z 2+b 4 z 4+b 5 z 2 s 2 (here is a nondimensional measure of the angular velocity of a fluid element distants from the axis of rotation andz from the plane through the centre of the star perpendicular to the axis of rotation, andb's are suitably chosen parameters) has been used. Whereas Kippenhahn and Thomas averaging approach has been used to incorporate the rotational effects in the stellar structure equations, Kopal's results on Roche equipotentials have been used to obtain the explicit form of the stellar structure equations, which incorporate the rotational effects up to second order of smallness in the distortion parameters. The method has been used to compute the equilibrium structure of certain differentially rotating polytropes. Certain differentially rotating polytropes. Certain differentially rotating models of the Sun have also been computed by using this approach.  相似文献   

11.
Robert W. Noyes 《Solar physics》1985,100(1-2):385-396
The techniques and principal results of observational studies of stellar activity are summarized. Both chromospheric and coronal emission clearly track surface magnetic field properties, but it is not well known how the detailed relation between the emission and surface magnetic fields varies with spectral type. For lower Main-Sequence stars of the same spectral type, there is clear evidence of a close relationship between mean activity level and rotation period P rot. There is also less definitive evidence for a similar dependence on convective overturn time c , such that activity depends on the single parameter Ro = P rot/ c . For single stars, stellar rotation, and magnetic activity both decline smoothly with age. This implies a feedback between angular momentum loss rate and activity level. Temporal variations in mean stellar activity level mimic the solar cycle only for old stars like the Sun, being much more irregular for younger stars. The characteristic timescale of the variations (the cycle period) appears to depend on Ro for old stars, but shows no clear dependence on either rotation rate or spectral type for younger stars. Further data on mean activity and its variation for a large number of lower Main-Sequence stars should contribute significantly to our understanding of the causes of stellar magnetic activity.  相似文献   

12.
The evolutionary behaviour of rotating low-mass stars in the mass range 0.2 and 0.9M has been investigated during the pre-Main-Sequence phase. The angular momentum is conserved locally in radiative regions and totally in convective regions, according to a predetermined angular velocity distribution depending on the structure of the star. As the stars contract toward the zero-age Main Sequence, they spin up under the assumption that the angular momentum is conserved during the evolution of the stars. When the stars have differential rotations, their inner regions rotate faster than the outer regions. The effective temperatures and luminosities of rotating low-mass stars are obtained lower than those of non-rotating stars. They have lower central temperature and density values compared to those of non-rotating stars.  相似文献   

13.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

14.
15.
The method of obtaining the estimates of the maximalt-interval ( , +) on which the solution of theN-body problem exists and which is such that some fixed mutual distance (e. g. 12) exceeds some fixed non-negative lower bound, for allt contained in ( , +), is considered. For given masses and initial data, the increasing sequences of the numbers k , each of which provides the estimate + > k , are constructed. It appears that if + = +, then .  相似文献   

16.
The acoustic energy-generation rate from the convective zone was calculated for various models. Results show that chromosphere and corona can be expected around stars with temperature lower than 8000K at the main sequence, and lower than 6500K at logg=2.When a star is rotating rapidly, mass loss from its corona is large, and can be an effective mechanism of braking the stellar rotation. If this mechanism is effective, we can explain the slow rotation of stars later than F2 to be the result of the loss of the angular momentum through a stellar wind that is effective in their main sequence phase. Stars with massM>1.5M lose mass through a stellar wind during their contraction phase. The mass-loss rate is larger than the solar value because of the larger energy input into the chromosphere-corona system and because of the smaller gravitational potential at the surface. T Tauri stars may be the observational counterparts for such stars. As the duration of contraction phase is very short (less than 107 years), the braking mechanism works only in the presence of a strong magnetic field (Ap) or in the presence of a companion (Am).Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

17.
The nonlinear self-excited oscillations of the envelopes of low-massive highly luminous stars are described. The parameters for these models wereM=0.8M ,M bol=–5.5, –5.84 mag,T eff=4500, 5000, 5500 K. The oscillations have been found to consist of the standing wave pulsation near the envelope bottom and running waves in outer layers. The ratio of the standing wave frequency s to the average frequency of the running waves r increases with the stellar luminosity: s / r =1.7 whenM bol=–5.5 mag and s / r =2.4 whenM bol=–5.84 mag. The frequency of oscillations near the photosphere is found to be in close agreement with the critical frequency for running waves. Mass loss from these stars is caused by shocks. It has been shown that agreement between FG Sge's period change observed during the last decade and the period-luminosity relation for double shell stars takes place when FG Sge's luminosity isM bol=–5.96 mag.  相似文献   

18.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

19.
The stars in the Main Sequence are seen as a hierarchy of objects with different massesM and effective dynamical radiiR eff=R/ given by the stellar radii and the coefficients for the inner structure of the stars.As seen in a previous work (Paper I), during the lifetime in the Main SequenceR eff(t) remains a near invariant when compared to the variation in the time ofR(t) and (t).With such an effectiveR eff one obtains the amounts of actionA c(M), the effective densities eff(M)=(M)3(M), the densities of action and of energy (or mean presures in the stellar interior)a c(M),e c(M), and the potential energiesE p(M).The amounts of action areA cM k withk1.87 for the M stars,k5/3 for the KGF stars, andk1.83 for the A and earlier stars, representing very simples conditions for the other dynamical parameters. For instancek5/3 means a near invariant effective density eff for the KGF stars, while for such stars the mean densities and coefficients present the strongest variations with masses (M)M –1.81, (M)M0.6.The cases for the M stars (e c(M)M –1) and for the A and earlier stars (betweena c(M)=constant and eff(M)M –1) and also discussed. These conditions for the earlier stars also represent reasonable mean values for the whole stellar hierarchy in the range of masses 0.2M M25M .With all this, one can build dynamical HR diagrams withA c(M), Ep(M), eff M p , etc., whose characteristics are analogous to these in the photometrical HR diagram. A comparison is made betweenA c(M) from the models here and the HR diagram with the best known stars of luminosity classes IV, V, and white dwarfs.The comparison of the potential energiesE p(M)M –p according to the stellar models used here and the observed frequency function (MM –q (number of stars in a given interval of masses) from different authors suggests the possibility that the productE p(M)(M) is a constant, but this must be confirmed with further studies of the function (M) and its fine structure.There are analogies between the formulation used here for the stellar hierarchy and other physical processes, for instance, in modified forms of the Kolmogorov law of turbulence and in the formulation used for the hierarchy of molecular clouds in gravitational equilibrium. Besides, the function of actionA c(M) for the stars has analogous properties to the relations of angular momenta and massesJ(M) for different types of objects. The cosmological implications of all this are discussed.  相似文献   

20.
We analyze the hypothesis of quantization in bands for the angular momenta of binary systems and for the maount of actionA c in stable and pulsating stars. This parameter isA c=Mv eff R eff, where the effective velocity corresponds to the kinetic energy in the stellar interior and the effective radius corresponds to the potential energyGM 2/R eff. Analogous parameters can be defined for a pulsating star withm=M where is the rate of the massm participating in the oscillation to the total massM andv osc,R osc the effective velocity and oscillation radius.From an elementary dimensional analysis one has thetA c (energy x time) (period)1/3 independently ifA c corresponds to the angular momentum in a binary system, or to the oscillation in a pulsating star or the inner energy and its time-scaleP eff in a stable star.From evolving stellar models one has that P effP eff(solar)1.22 hr a near-invariant for the Main Sequence and for the range of masses 0.6M <M<1.6M .With this one can give scalesn k=kn 1 withk integers andn 1=(P/P 1)1/3 withP 1=P eff1.22 hr. In these scales proportional toA c, one sees that the periods in binary and pulsating stars are clustered in discrete unitsn 1,n 2,n 3, etc.This can be seen in pulsating Scuti, Cephei, RR Lyrae, W Virginis, Cephei, semi-regular variables, and Miras and in binary stars as cataclysmic binaries, W Ursa Majoris, Algols, and Lyrae with the corresponding subgroups in all these materials. Phase functions (n k) in RR Lyrae and Cephei are also associated with discrete levelsn k.the suggested scenario is that the potential energies and the amounts of actionE p(t), Ac(t) are indeed time-dependent, but the stars remain more time in determinated most proble states. The Main Sequence itself is an example of this. These most probable states in binary systems, or pulsating or stable stars, must be associated with velocities sub-multiplesc/ F , given by the velocity of light and the fine structure constant.Additional tests for such a hypothesis are suggested when the sufficient amount of observational data are available. They can made with oscillation velocities in pulsating stars and velocity differences of pairs of galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号