首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The existence of sidereal semidiurnal variation of cosmic-ray intensity in a rigidity region 102-103 GV has been reported by many researchers, but there is no consensus of opinion on its origin. In this paper, using the observed semidiurnal variations in a rigidity range (300–600 GV) with 10 directional muon telescopes at Sakashita underground station (geog. lat. = 36°, long. = 138°E, DEPTH = 80 m.w.e.), the authors determine the magnitudes (η1, η2) and directions (a1, a2) of the first- and second-order anisotropies in the following galactic cosmic-ray intensity distribution (j)
jdp = j0{1 + η1P1(cos χ1) + η2P2(cos χ2)}dp
, where Pnis the nth order spherical function and χn is the pitch angle of cosmic rays with respect to an. For the determination, the influence of cosmic-ray's heliomagnetospheric modulation, geomagnetic deflection and nuclear interaction with the terrestrial material and also of the geometric configuration of the telescopes are taken into account. Usually, the semidiurnal variation is produced by the second-order anisotropy. The present observation, however, requires also the first-order anisotropy which usually produces only the diurnal variation, but can produce also the semidiurnal variation as a result of the heliospheric modulation. The first- and second-order anisotropies are characterized with η1) > 0 and η2 < 0 have almost the same direction (a1 a2) specified by the right ascension ( 0.75 h) and declination (δ 50°S) and, therefore, they can be expressed, as a whole, by an axis-symmetric anisotropy of loss-cone type (i.e. deficit intensities in a cone). It is noteworthy that this anisotropy approximately coincides with that inferred from the air shower observation at Mt Norikura in the rigidity region 104 GV.  相似文献   

2.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

3.
We calculate the expected flux of γ-ray and radio emission from the LMC due to neutralino annihilation. Using rotation curve data to probe the density profile and assuming a minimum disk, we describe the dark matter halo of the LMC using models predicted by N-body simulations. We consider a range of density profiles including the NFW profile, a modified NFW profile proposed by Hayashi et al. (2003) to account for the effects of tidal stripping, and an isothermal sphere with a core. We find that the γ-ray flux expected from these models may be detectable by GLAST for a significant part of the neutralino parameter space. The prospects for existing and upcoming Atmospheric Cherenkov Telescopes (ACTs) are less optimistic, as unrealistically long exposures are required for detection. However, the effects of adiabatic compression due to the baryonic component may improve the chances for detection by ACTs. The maximum flux we predict is well below EGRET's measurements and thus EGRET does not constrain the parameter space. The expected synchrotron emission generally lies below the observed radio emission from the LMC in the frequency range of 19.7–8550 MHz. As long as σv<2×10−26 cm3 s−1 for a neutralino mass of 50 GeV, the observed radio emission is not primarily due to neutralinos and is consistent with the assumption that the main source is cosmic rays. We find that the predicted fluxes, obtained by integrating over the entire LMC, are not very strongly dependent on the inner slope of the halo profile, varying by less than an order of magnitude for the range of profiles we considered.  相似文献   

4.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

5.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

6.
A new method of analysing the emission spectrum of solar prominences is presented, in which the source function is allowed to vary with optical depth. Least-squares fitting of the observed profile determines simultaneously the optical depth τ0, the Doppler width ΔλD and the factor characterising the variation of the source function. This method is applied to the early Balmer lines in ten prominences of Ref. [1]. The results show that the source function of the self-reversed H line increases towards the centre of the prominence, the value at the centre is 1.2–2.5 times the value at the edge. Neglect of this variation will give too large values of τ0. The degree of attenuation by selfabsorption also depends on this variation. Discussion of the variation gives support to the view that the main exciting mechanism in solar prominences is the scattering of the incident radiation.  相似文献   

7.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

8.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

9.
We compare the tau neutrino flux arising from the galaxy and the earth atmosphere for 103E/GeV1011. The intrinsic and oscillated tau neutrino fluxes from both sources are calculated. The intrinsic galactic ντ flux (E103 GeV) is calculated by considering the interactions of high-energy cosmic-rays with the matter present in our galaxy, whereas the oscillated galactic ντ flux is coming from the oscillation of the galactic νμ flux. For the intrinsic atmospheric ντ flux, we extend the validity of a previous calculation from E106 GeV up to E1011 GeV. The oscillated atmospheric ντ flux is, on the other hand, rather suppressed. We find that, for 103E/GeV5×107, the oscillated ντ flux along the galactic plane dominates over the maximal intrinsic atmospheric ντ flux, i.e., the flux along the horizontal direction. We also briefly mention the presently envisaged prospects for observing these high-energy tau neutrinos.  相似文献   

10.
A conductive ionosphere and a totally non-conductive layer of the atmosphere close to the surface of the planet form a quasispherical concentric resonator. This provides in principle for the possibility of the existence of global resonances of an electromagnetic field generated by thunderstorm activity or by hydromagnetic waves excited in an upper ionosphere and transformed into ordinary electromagnetic waves while penetrating the resonator. We have obtained an estimate of resonance frequencies of a Martian resonator: ƒ1 13–14 Hz,ƒ2 24–26 Hz, ƒ3 35–38 Hz, etc. for two essentially different models of electron density distribution in the low ionosphere of Mars. The corresponding estimated quality values are low: Qn 2–4. A relatively wide range of the quality variation depending on a model of averaged altitudinal electron density distribution in the low ionosphere of Mars yields the criterion for an adequate model.  相似文献   

11.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

12.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

13.
We compute the big bang nucleosynthesis limit on the number of light neutrino degrees of freedom in a model-independent likelihood analysis based on the abundances of 4He and 7Li. We use the two-dimensional likelihood functions to simultaneously constrain the baryon-to-photon ratio and the number of light neutrinos for a range of 4He abundances Yp = 0.225–0.250, as well as a range in primordial 7Li abundances from (1.6 to 4.1) ×10−10. For (7Li/H)p = 1.6 × 10−10, as can be inferred from the 7Li data from Population II halo stars, the upper limit to Nν based on the current best estimate of the primordial 4He abundance of Yp = 0.238 is Nν < 4.3 and varies from Nν < 3.3 (at 95% C.L.) when Yp = 0.225 to Nν < 5.3 when Yp = 0.250. If 7Li is depleted in these stars the upper limit to Nν is relaxed. Taking (7Li/H)p = 4.1 × 10−10, the limit varies from Nν < 3.9 when Yp = 0.225 to Nν 6 when Yp = 0.250. We also consider the consequences on the upper limit to Nν if recent observations of deuterium in high-redshift quasar absorption-line systems are confirmed.  相似文献   

14.
We calculate the event rates induced by a 51Cr νe source and by a 90Sr---90Y source in BOREXINO through elastic scattering on electrons, assuming a nonzero neutrino magnetic moment μν. We consider a source activity of about 2 MCi and estimate the solar ν (“source-off”) background for various oscillation scenarios. It is shown that values of μν as low as 0.5 × 10−10μB ( 0.2 × 10−10μB) can be proved with the 51Cr source (90Sr source) in about 100 days of data taking.  相似文献   

15.
The main properties of the neutralino dark matter are revisited in the light of the new theoretical developments in Susy theories and of the recent constraints from accelerators and underground experiments. The neutralino relic abundance and the detection rates relevant for direct and indirect searches are evaluated in the minimal supersymmetric standard model (MSSM) with the full inclusion of the (one-loop) radiative corrections, both to the Higgs masses and to the trilinear Higgs self-coupling. The relevance of these corrections for the neutralino-neutralino annihilation cross-section, and thus for the relic density, is discussed in detail. Large regions of the parameter space are considered, including those where the neutralino only provides a fraction of the local dark matter density; in these domains the standard value for the local density is appropriately scaled down. Some general properties of the detection rates as functions of the MSSM parameters are also elucidated; in particular it is shown that in the regions of the parameter space where scaling of the local density occurs, the rates are largely independent of two of the model free parameters. The relevance of the Kamiokande upper bounds to the upgoing muon fluxes is discussed in connection with the possible neutrino outputs from the Earth and from the Sun due to neutralino accumulation and annihilation in these macroscopic bodies. Finally, the complementarity between the search for neutralino dark matter and the discovery potential of future accelerators is discussed.  相似文献   

16.
We analyze an extended redshift sample of Abell/ACO clusters and compare the results with those coming from numerical simulations of the cluster distribution, based on the truncated Zel'dovich approximation (TZA), for a list of eleven dark matter (DM) models. For each model we run several realizations, so that we generate a set of 48 independent mock Abell/ACO cluster samples per model, on which we estimate cosmic variance effects. Other than the standard CDM model, we consider (a) Ω0 = 1 CDM models based on lowering the Hubble parameter and/or on tilting the primordial spectrum; (b) Ω0 = 1 Cold + Hot DM models with 0.1 ≤Ων ≤0.5; (c) low-density flat ΛCDM models with 0.3 ≤Ω0 ≤0.5. We compare real and simulated cluster distributions by analysing correlation statistics, the probability density function, and supercluster properties from percolation analysis. We introduce a generalized definition of the spectrum shape parameter Γ in terms of σ25/σ8, where σris the rms fluctuation amplitude within a sphere of radius r. As a general result, we find that the distribution of galaxy clusters provides a constraint only on the shape of the power spectrum, but not on its amplitude: a shape parameter 0.18 Γ 0.25 and an effective spectral index at the 20 h−1 Mpc scale −1.1 neff −0.9 are required by the Abell/ACO data. In order to obtain complementary constraints on the spectrum amplitude, we consider the cluster abundance as estimated using the Press-Schechter approach, whose reliability is explicitly tested against N-body simulations. By combining results from the analysis of the distribution and the abundance of clusters we conclude that, of the cosmological models considered here, the only viable models are either Cold + Hot DM ones with 0.2 Ων 0.3, better if shared between two massive ν species, and ΛCDM ones with 0.3 Ω00.5.  相似文献   

17.
We analysed the emission spectra of solar prominences using the complete linearization method [5] and found simultaneously the optical depth at the line centre τ0, the doppler width of the line ΔλD and the damping width a. The results show 1) that the complete linearization method has a larger radius of convergence, 2) that we must consider the variation of the source function with depth, when determining τ0, and 3) that the calculated values of the damping constant for the H, Hβ of hydrogen and H and K lines of Calcium are all much greater than the theoretical values from doppler broadening and radiation damping, showing that other mechanisms besides these two also contribute to the broadening of prominence lines.  相似文献   

18.
A method of joint estimation of the parameters and the variance σ2 in the linear model is presented in this paper. The M-estimators with finite rejection points are adopted for estimating the parameters. In order to estimate the variance σ2, the Grubbs statistics and the Kurtosis test statistics are adopted to test the residual sequence {;ri};. And the sample variance of {;ri}; after discarding the outliers is taken as the estimation of σ2. This method of estimating σ2 is less computational demanding and more accurate, compared with the well-known method which takes 1.483 medi |ri| as the estimation of σ. The breakdown point of the above estimation of σ2 is more than 20%, while the brekdown point is less than 10%, if only the Grubbs statistics is used.  相似文献   

19.
In this paper the question is examined of how the v.l.f. radio-waves are guided along the magnetic field. Energy passes through the magnetic field under two sets of conditions. Corresponding to the “nose-whistlers” explained by Helliwell, the first one occurs when the wave-normal itself is in the direction of the magnetic field. This does not happen in the second case when the remarkable property is also shown that all frequencies are propagated at the same velocity V0 = cƒH/2ƒ0H gyrofrequency, ƒ0 frequency of the plasma). Considerations of energy point out that, if such a propagation is not easily observable in the case of an isotropic emission, it is not the same thing for an emission produced by erenkov effect, which is able to produce all energy by this mode of propagation, provided the particle's velocity has a low fixed value (˜ 10,000 km/sec in the exosphere). All frequencies being emitted at the same time and following the same path wtih the same velocity, we can explain the broadband noise observed during the reception of whistlers. The required velocity of particles is exactly the velocity V0. This coincidence is explained in an appendix, and extended to other anisotropic media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号