首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simulation of global warming effect on outdoor thermal comfort conditions   总被引:3,自引:2,他引:1  
In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 °C and 5.6 °C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.  相似文献   

2.
Assessing the climatic characteristics and identifying the climatic parameters of a specific region can play a major role in human welfare. Thermal comfort conditions are among the most significant factors of climatic variables in the northwestern regions of Iran due to the considerable spatial and temporal variations and are vital for environmental, energy and economic management. It is therefore necessary to advance our knowledge of the climatic conditions in order to provide an appropriate tool for managing climatic extremes. This requires charting of the range of clusters of the thermal comfort conditions in this region. In this study, the general atmosphere circulation model HADCM3 and the A1 scenario, downscaled by the LARS-WG model, were employed to simulate the climatic conditions in Iran during the period 2011–2040. The data obtained were compared with sampled data from six Iranian climatic stations for the 30-year period (1961–1990). In order to tabulate this comparison, six clusters per climatic station were defined based on intrinsic similarity of data. Results show an increase in the annual average temperature of these six stations by 1.69 °C for the predicted years, projected from the base years 1961–1990. This factor has resulted in an increment of the annual average thermal comfort temperature inside buildings by a magnitude of 0.52 °C in future decades. When the thermal requirements of the studied region were evaluated based on the real temperature difference and the degree of thermal comfort, it becomes clear that apart from cluster 1, the energy required to reach thermal comfort inside buildings will increase in the future. As a result of this temperature increase, an increase of the energy required to reach the thermal comfort is expected. This new methodology is an interesting tool and needs to be seriously considered by engineers and architects in designing buildings of the future.  相似文献   

3.
《Quaternary Research》1986,26(1):135-152
Biostatistical analysis of modern pollen assemblages in 152 Japanese surface samples shows that Cryptomeria japonica can normally grow in areas with a mean January temperature of approximately −7° to 7°C, a mean August temperature of 19° to 27°C, and an effective precipitation (total precipitation during the growing season) of over 1000 mm. The full-glacial distribution of the species on both the Sea of Japan and the Pacific coasts (35–36°N lat) indicates that in these areas the maximum possible reduction of temperature was 8.7–10.2°C in January and 6.0–7.3°C in August, and that the effective precipitation was low, being 1000–1350 mm, or 40–55% below the modern level, provided that the species has not changed its physiological characteristics. Populations of C. japonica expanded northward and upslope from their full-glacial areas of distribution immediately after late-glacial climatic amelioration. This expansion appears to have been regulated mainly by the availability of effective precipitation which became high in northeastern Honshu about 4000 yr ago. After about 2500 yr B.P., C. japonica was planted extensively by humans in moist, temperate climatic regions (excluding Hokkaido), and now has its widest distribution since at least the last full-glacial interval.  相似文献   

4.
Sharm Obhur is a narrow coastal inlet about 10 km long. The maximum depth at the entrance is about 35 m, which decreases gradually towards the head. Nine field trips were conducted for hydrographic survey in the Sharm during April 2015–January 2016 covering pre-summer transition, summer, pre-winter transition and winter seasons. In each trip, eight stations along the central axis of the Sharm were occupied for the measurement of temperature and salinity. In addition, an Acoustic Doppler Current Profiler (ADCP) mooring was deployed near the entrance (at station 2) during 18 February–26April 2015. The vertical structures of temperature and salinity show two distinct layers—a relatively low saline surface layer and a high saline bottom layer. The thermohaline properties increase from the entrance towards the head in all the seasons except for a slight decrease in temperature during December. Near the head, the observed maximum temperature and salinity are 33.22 °C (August) and 40.36 psu (April), respectively, while the observed minimum temperature and salinity are 25.05 °C and 38.97 psu, respectively, during January. The water exchange between the Sharm and the Red Sea shows two-layer structure, with a surface inflow and a deep outflow which is typical of basins where evaporation exceeds precipitation. The pressure gradient generated by the increasing density towards the head pushes the relatively low saline surface water from the Red Sea to the Sharm with a gradient in surface salinity influenced by the evapouration and heat exchange. Near the head, it sinks and returns as a deep water flow. The estimated flushing time of the Sharm varies between 7 and 12 days with an average of 9.5 days.  相似文献   

5.
Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA   总被引:2,自引:1,他引:1  
Mean annual recharge in the Sand Hills of Nebraska (USA) over the 2000?C2009 period was estimated at a 1-km spatial resolution as the difference of mean annual precipitation (P) and evapotranspiration (ET). Monthly P values came from the PRISM dataset, while monthly ET values were derived from linear transformations of the MODIS daytime land-surface temperature values into pixel ET rates with the help of ancillary atmospheric data (air temperature, humidity, and global radiation). The study area receives about 73?mm of recharge (with an error bound of ±73?mm) annually, which is about 14?±?14% of the regional mean annual P value of 533?mm. The largest recharge rates (about 200?±?85?mm or 30?±?12% of P) occur in the south-eastern part of the Sand Hills due to smoother terrain and more abundant precipitation (around 700?mm), while recharge is the smallest (about 40?±?59?mm or 10?±?14% of P) in the western part, where annual precipitation is only about 420?mm. Typically, lakes, wetlands, wet inter-dunal valleys, rivers, irrigated crops (except in the south-eastern region) and certain parts of afforested areas in the south-central portion of the study area act as discharge areas for groundwater.  相似文献   

6.
The semi-arid region of the Dead Sea heavily relies on groundwater resources. This dependence is exacerbated by both population growth and agricultural activities and demands a sustainable groundwater management. Yet, information on groundwater discharge as one main component for a sustainable management varies significantly in this area. Moreover, discharge locations, volume and temporal variability are still only partly known. A multi-temporal thermal satellite approach is applied to localise and semi-quantitatively assess groundwater discharge along the entire coastline. The authors use 100 Landsat ETM + band 6.2 data, spanning the years between 2000 and 2011. In the first instance, raw data are transformed to sea surface temperature (SST). To account for groundwater intermittency and to provide a seasonally independent data set ?T (maximum SST range) per-pixel within biennial periods is calculated subsequently. Groundwater affected areas (GAA) are characterised by ?T < 8.5 °C. Unaffected areas exhibit values >10 °C. This allows the exact identification of 37 discharge locations (clusters) along the entire Dead Sea coast, which spatially correspond to available in situ discharge observations. Tracking the GAA extents as a direct indicator of groundwater discharge volume over time reveals (1) a temporal variability correspondence between GAA extents and recharge amounts, (2) the reported rigid ratios of discharge volumes between different spring areas not to be valid for all years considering the total discharge, (3) a certain variability in discharge locations as a consequence of the Dead Sea level drop, and finally (4) the assumed flushing effect of old Dead Sea brines from the sedimentary body to have occurred at least during the two series of 2000–2001 and 2010–2011.  相似文献   

7.
The present research evaluated the relation between the normalized difference vegetation index (NDVI) changes and the climate change during 2000–2014 in Qazvin Plain, Iran. Daily precipitation and mean temperature values during 2015–2040 and 2040–2065 were predicted using the statistical downscaling model (SDSM), and these values were compared with the values of the base period (2000–2014). The MODIS images (MOD13A2) were used for NDVI monitoring. In order to investigate the effects of climate changes on vegetation, the relationship between the NDVI and climatic parameters was assessed in monthly, seasonal, and annual time periods. According to the obtained results under the B2 scenario, the mean annual precipitation at Qazvin Station during 2015–2040 and 2040–2065 was 6.7 mm (9.3%) and 8.2 mm (11.36%) lower than the values in the base period, respectively. Moreover, the mean annual temperature in the mentioned periods was 0.7 and 0.92 °C higher than that in the base period, respectively. Analysis of the correlations between the NDVI and climatic parameters in different periods showed that there is a significant correlation between the seasonal temperature and NDVI (P < 0.01). Moreover, the NDVI will increase 0.009 and 0.011 during 2015–2040 and 2040–2065, respectively.  相似文献   

8.
The study compared the sequences of daily rainfall over coastal southern and semi-arid northern Nigeria. Daily rainfall occurrences for 41 years (1971–2011) over four meteorological stations in Lagos, Rivers, Borno, and Katsina were analyzed using frequency analysis and Markov chain model. Findings indicate that the coastal area had a predominance of 2–4-day wet spells while the semi-arid area showed a wet spell distribution that is geometric in nature with 1-day spell predominance. The dry spell behavior was nearly the opposite of the wet spell occurrence. The coastal region showed a dry spell of 1–4-day spell predominance while the semi-arid region showed a predominance of higher dry spells of 2–6 days. Accumulation of the amount of rainfall in each spell also showed that much rainfall from the coastal area was obtained from rains of spells of 3 days and above while the semi-arid had more of its rain from spells of 1–3 days. The mean annual rainfall was 1423.75 mm (Lagos), 2173.56 mm (Rivers), 517.50 mm (Katsina), and 578.34 mm (Borno). The wettest month was June (274.08 mm) in Lagos, September (378.18 mm) in Rivers, and August in Katsina and Borno (172.98 and 184.81 mm, respectively). The driest months were January for Lagos and Rivers (15.77 and 18.96 mm, respectively) and November–February for Katsina and Borno (0–0.06 mm). This showed that the coastal areas had nearly three times the volume of rain in the semi-arid area. The study further showed that onset of rain for the coastal area was March/April while the cessation of rainy season was October/November. On the other hand, the onset of rainy season in the semi-arid area was May/June and cessation of rainy season was September. Findings portend drier days for the semi-arid area due to dry spell persistence and hence, the consequent challenges of providing artificial water supply for agriculture and other purposes especially from October to May.  相似文献   

9.
The hydrographic structure in the east central Arabian Sea during premonsoon period undergoes significant temporal change in the thermal field of upper 100 m, wherein temperature rises by about 0–5°C on an average from May to June. The major contribution in increasing the surface layer temperature comes from surface heat exchange processes, while the horizontal advective process tends to remove the heat from the upper layer. The geostrophic flow patterns are similar from May to June in the major part of the study area while in the coastal areas off Goa a southerly current sets in June in response to coastal upwelling.  相似文献   

10.
The processes and rates of groundwater recharge in arid and semiarid environments are highly related to local climate parameters, particularly precipitation. The chloride profile of an unsaturated zone in an arid and semiarid region can be used to infer the recharge history and past changes in climate, by extension. In this study, a 17-m chloride profile was collected from the sandy loess in the northwestern Chinese Loess Plateau, which also lies in the transition zone between desert and loess. A 71-year groundwater recharge history was reconstructed using the chloride mass balance method with an annual Cl? input of 0.84 g/m2/year. The reconstructed history revealed a long-term decline in recharge with multiple shorter-term oscillations. Five recharge stages between 1938–1946, 1947–1955, 1956–1975, 1976–2000, and 2001–2008 AD were identified, where the lowest average recharge value was 25.1 mm/a in 1976–2000 AD and the highest was 71.7 mm/a in 1947–1955 AD. Climate conditions during these five periods were also inferred based on the reconstructed recharge rates with the knowledge that high recharge corresponds to more humid climates. The climate over the past 71 years generally became drier in the study area, despite some fluctuations. The reconstructed recharge rates, calculated from 1/Cl? in the profile, exhibited the same variability as annual precipitation measured in the region, both in long- and short-term oscillations over the period from 1955 to 2008. The chloride concentration variations in the profile, indicating changes in recharge flux, also well correlated with annual precipitation anomalies in the region to the east of 100°E in China for the whole study period. These comparisons verified that it is feasible to study not only groundwater recharge, but also past climate change using a chloride profile from the sandy loess area. The results suggested that unsaturated zones of sandy loess may be valuable archives for reconstructing recharge history and regional paleoclimate changes in the region.  相似文献   

11.
Vegetation and climate during the last glacial maximum in Japan   总被引:1,自引:0,他引:1  
The Japanese Archipelago was almost entirely covered by coniferous forests during the last glacial maximum. Northern Hokkaido was distinguished by coniferous parkland and tundra vegetation, while southern Hokkaido and northernmost Honshu were covered by northern boreal coniferous forests consisting mainly of Picea jezoensis, Picea glehnii, Abies sachalinensis, and Larix gmelinii; Tsuga was missing from the forest. More diverse boreal forests including species from Sakhalin and northern Japan grew together in northeastern Honshu. Central Honshu and the mountains of southwestern Japan supported subalpine coniferous forests which are now mainly restricted in distribution to the central mountains. Temperate coniferous forests (Picea polita, Abies firma, and Tsuga sieboldii) existed principally in the modern mid-temperate and evergreen laurel-oak forest regions. Haploxylon pine and tree birch were also abundant in the boreal and cool-temperate zones, as was Diploxylon in the southern temperate zone. Significant populations of Fagus were found along the Pacific coasts of Kyushu and Shikoku, but they were too small to be defined as a beech forest zone. Quercetum mixtum (Quercus, Ulmus, and Tilia) was more common in the coastal lowlands of southwestern Japan than those of northeastern Honshu; it was completely eliminated from Hokkaido. The reduced mean August temperature inferred from the floral assemblages showed a latitudinal gradient 20,000 yr ago; it was 8–9°C in northern Hokkaido, 7.7–8.7°C in northernmost Honshu, 7.2–8.4°C in the central mountains, 6.5°C in the Chugoku District, and 5–6°C in Kyushu. The probable annual precipitation ranged from 1050 to 1300 mm along coasts in southwestern Japan during the culmination of the last glaciation.  相似文献   

12.
Vegetation and climate since the LGM in eastern Hokkaido were investigated based on a pollen record from marine core GH02-1030 from off Tokachi in the northwestern Pacific. We also examined pollen spectra in surface samples from Sakhalin to compare and understand the climatic conditions of Hokkaido during the last glacial period. Vegetation in the Tokachi region in the LGM (22–17 ka) was an open boreal forest dominated by Picea and Larix. During the last deglaciation (17–10 ka), vegetation was characterized by abundant Betula. In the Kenbuchi Basin, central Hokkaido, a remarkable increase of Larix and Pinus occurred in the LGM and the last deglaciation, which was assigned as the “Kenbuchi Stadial.” Comparison of climatic data between the core GH02-1030 and that of Kenbuchi Basin demonstrates that variations in temperature and precipitation were larger in inland Hokkaido than in the maritime area of the Pacific coast. During the LGM in the Tokachi region, the August mean temperature was about 5 °C lower, and annual precipitation was about 40% lower than today. In the Kenbuchi Basin, central Hokkaido, the August mean temperature was about 8 °C lower, and annual precipitation was half that of today. During the last deglaciation, August mean temperatures were about 3 °C lower, and annual precipitation was about 30% lower than today in the Tokachi region. In the Kenbuchi Basin, August mean temperatures were about 5–8 °C lower, and annual precipitation was about 40–60% lower than today. Cold ocean water and a strengthened summer monsoon after 15 ka may have resulted in the formation of advection fogs, reduced summer temperatures, and a decrease in the seasonal temperature difference in the Tokachi district, which established favorable maritime conditions for Betula forests.  相似文献   

13.
Bihourly water temperatures from two, 110-day study periods are compared for a study site in the Indian River Lagoon, along the Atlantic coast of South Florida. Results of a summer study include the annual maximum temperatures in July and August, and reveal low-frequency variations of ±1–2°C superimposed onto the annual curve. The winter study shows the annual minimum temperatures in late February and low-frequency variations of ±3–4°C superimposed onto the annual curve. At the very long and the very short periodicities, thermal activity is consistently higher during the winter study. At the diurnal period, however, the temperature range during the summer study is twice that recorded during the winter study, and the time of warmest water in the diurnal cycle is shifted back between two and three hours toward mid day in the summer months. This is attributed to the relative increase in importance of heating by insolation at that time of year. Sensible and latent heat fluxes appear to damp the diurnal cycle in both records.  相似文献   

14.
Ficopomatus enigmaticus, a polychaete inhabiting the subtidal zone in the Mar Chiquita coastal lagoon, builds reef-like aggregates that facilitate silt accumulation. To describe the life cycle, samples were take monthly from September 1984 to September 1985. In contrast with other polychaetes, it has two oocyte generations per year; maturation of the oocytes takes approximately 4 mo. Temperature level and day length regime do not appear as environmental signals to the onset of oogenesis, although they possibly affect oogenesis growth. Two periods of spawning and recruitment were observed in November–December and April–May, when water temperature is above 18°C. Hermaphroditic individuals were not found. Sex ratio was male-biased in all months, significantly in November, February, and August (p<0.001). Monthly size-frequency distributions show distinct year-classes with early (November–December) and late (April–May) recruitment. Early recruited cohorts have two spawning periods during a 24-mo lifespan. Late cohorts have one spawning period during their 20-mo lifespan. The life cycle of this species can be summarized as follows: annual iteroparous—1 to 2 batches of small eggs per female during each lifespan, free spawning, planktotrophic larvae, sedentary suspension-feeder worms.  相似文献   

15.
This study compares the thermal bioclimatic conditions recorded at Bursa (100 m) and Uluda? (1878 m) meteorological stations at 7:00, 14:00 and 21:00 LST (local standard time) between 1975 and 2006, by using the physiologically equivalent temperature (PET), which is calculated from meteorological parameters. The effects of elevation-dependent environmental and atmospheric conditions on thermal perception (i.e., PET) values were analyzed and assessed. The analysis showed that the mean annual difference between PET values in Bursa and Uluda? was 12 ºC. The difference was lower in winter (9 ºC PET) and higher in summer (15 ºC PET). The highest difference between PET values occurred in the afternoon (16 ºC PET) and the lowest difference occurred in the morning (8.4 ºC PET). The differences occur as a result of high altitude and higher surface albedo due to snowfall, which leads to lower PET values and thus to less comfortable thermal conditions. The mean PET values of Bursa and Uluda? decrease 0.67 ºC every 100 m.  相似文献   

16.
Cosmogenic 36Cl was measured in bedrock and moraine boulders in the Za Mnichem Valley (High Tatra Mountains). The post‐LGM deglaciation of the study area occurred about 15.9 ka ago. The northernmost part of the valley slopes was ice‐free around 15 ka ago. The terminal moraine on the valley threshold was finally stabilized 12.5 ka ago during the Younger Dryas cold event (Greenland Stadial 1). At that time, the Za Mnichem glacier was 1.3 km long and had an area of 0.57 km2. The AAR equilibrium line of the glacier was located at 1990 m a.s.l., which corresponds to an ELA depression of ~500 m compared to today. The mean summer temperature was colder by 4°–4.5°C than the present‐day temperature. The mean annual temperature was colder by 6°C than today. Such conditions suggest a decrease of the annual precipitation by ~15–25% compared with the present‐day annual average. These data indicate a probable uniform temperature change across central and western Europe, with the precipitation being the most significant factor affecting the mass balance of mountain glaciers. The spatial distribution of balance data suggests increasing continentality towards the east during the Younger Dryas.  相似文献   

17.
Monthly temperature and precipitation estimates for the period 15000–2000 yr BP are statistically derived from pollen analytical data obtained from a site near Echternach, Luxembourg. A continuous warming trend of over 10°C is recorded for the period 10500—8000 yr BP, along with a rise in precipitation of 500 mm. A fairly constant temperature characterised the period between 8000 and 2000 yr BP, though an episode of slight temperature decrease (-2°C) occurred at about 4500 yr BP. The most humid intervals seem to have been at around 9000–7000 and 5000–3000 yr BP (principally during the warm season: more continental influence). In contrast with results obtained from more southerly sites, the ‘Older Dryas’ climatic reversal is clearly recorded at Echternach slightly before 12000 yr BP. It is marked by a cooling in July temperature of about 4°C and a decrease in monthly precipitation of about 30 mm (40%).  相似文献   

18.
We have compiled what we believe is the longest coherent coastal sea surface temperature record in North America. Near-surface water temperature measurements have been made almost daily at Great Harbon, Woods Hole, Massachusetts, since 1886 with remarkably few gaps. The record shows that there was no significant trend in water temperature at this site for the first 60 yr of observation. There was some cooling during the 1960s that was followed by a significant warming from 1970–2002 at a rate of 0.04°C yr?1. During the 1990s annual mean temperatures averaged approximately 1.2°C warmer than they had been on average between 1890 and 1970; winter (December, January, and February) temperatures were 1.7°C warmer and summer (June, July, and August) temperatures were 1.0°C warmer. There has not been a statistically significant decrease in the annual number of winter days below 1°C or an increase in the annual number of winter days above 5°C. The number of summer days each year with water temperature above 21°C has not increased significantly. The dates of first observations of 10°C and 20°C water in the spring have not changed sufficiently to be statistically significant. There is a weak positive correlation between annual and winter water temperature and the annual and winter North Atlantic Oscillation index, respectively, during the period of record.  相似文献   

19.
The mean sea surface temperature anomalies (SSTA) of the Mediterranean Sea during the past 150 years (1856–2000) are analysed. The first empirical orthogonal function (EOF) of the covariance matrix of the SSTA explains more than 45% of the variance, suggesting that the temporal variation of the Mediterranean Sea is largely in phase over the whole basin. The mean variability of Mediterranean SSTA from 1856 to 2000 superposes a main irregular oscillation (period of 60–70 years and mean amplitude of 0.4–0.5 °C) and a weak long-term positive trend (equivalent to an increase of +0.1 °C per century). The last warm phase, which is strongest in the western basin, is not warmer than the decade 1935–1945 or the ending part of the 1960s. The mean temporal evolution of the North Hemisphere is close to the variation of the Mediterranean Sea, except that the long-term increase is more intense in the North Hemisphere. To cite this article: V. Moron, C. R. Geoscience 335 (2003).  相似文献   

20.
Shallow estuarine lagoons characterize >70 % of the eastern Alaskan Beaufort Sea coastline and, like temperate and tropical lagoons, support diverse and productive biological communities. These lagoons experience large variations in temperature (?2 to 14 °C) and salinity (0 to >45) throughout the year. Unlike lower latitude coastal systems, transitions between seasons are physically extreme and event-driven. On Arctic coastlines, a brief summer open-water period is followed by a 9-month ice-covered period that concludes with a late-spring sea ice breakup and intense freshwater run-off. From 2011 to 2014, we examined interannual variations in water column physical structure (temperature, salinity, and δ18O) in five lagoons that differ with respect to their degree of exchange with adjacent marine waters and magnitude of freshwater inputs. Temperature, salinity, and source water composition (calculated using a salinity and δ18O mixing model) were variable in space and time. During sea ice breakup in June, water column δ18O and salinity measurements showed that low salinity waters originated from meteoric inputs (50–80 %; which include river inputs and direct precipitation) and sea ice melt (18–51 %). Following breakup, polar marine waters became prevalent within a mixed water column over the summer open-water period within all five lagoons (26–63 %). At the peak of ice-cover extent and thickness in April, marine water sources dominated (75–87 %) and hypersaline conditions developed in some lagoons. Seasonal runoff dynamics and differences in lagoon geomorphology (i.e., connectivity to the Beaufort Sea) are considered key potential drivers of observed salinity and source water variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号