首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

2.
This study presents a multi‐proxy record from Lake Kotokel in the Baikal region at decadal‐to‐multidecadal resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000‐year interval of globally harsh climate often referred to as the Last Glacial Maximum (LGM). The studied lake is situated near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous forests, cold steppe associations typical for northern Mongolia, and mountain tundra vegetation. The results provide a detailed picture of the period in focus, indicating (i) a driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP), and (iii) a phase (c. 22.6–22.0 cal. ka BP) of relatively high precipitation (and moisture availability) and relatively high lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the LGM. Our chironomid‐based reconstruction suggests at least 3.5 °C higher than present summer temperatures between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic region inferred from Greenland ice‐cores. Overall, it appears that environments in central Eurasia during the LGM were affected by much colder than present winter temperatures and higher than present summer temperatures, although the effects of temperature oscillations were strongly influenced by changes in humidity.  相似文献   

3.
4.
西藏扎布耶盐湖30.0 ka B P以来水位与古降水量变化   总被引:5,自引:1,他引:5       下载免费PDF全文
齐文  郑绵平 《地球学报》2005,26(1):53-60
扎布耶湖9级大型沙砾堤记录了约30.0ka B P以来水位退缩历史,与北部拉果错、南部塔若错的垭口沉积记录了3个湖泊最后分离的时间。本文应用数字地面高程模型(DEM),计算了扎布耶各级沙堤对应湖面期的湖水面积、体积与含盐量;分析了扎布耶与拉果错、塔若错的分-合历程,计算了各时期汇流盆地总面积;参考湖泊、冰川、孢粉、天文学等多学科关于古温度、辐射平衡的结论,得出了较为可信的计算参数。在此基础上,应用根据西藏实际情况得出的辐射平衡和水面蒸发、陆面蒸发计算模型,代入封闭盆地水量平衡方程,得出了较Kutzbach水-能方程更可靠的降雨量-水域面积/流域面积比的非线性方程,计算出泛湖期(9级沙堤,40.0~28.0ka B P)该区降雨量567 mm/a,盛冰阶时降至350mm/a以下,冰期后增至402mm/a,随后逐步下降直至约Ⅰ-1级阶地时(海拔4421m,3.53ka B P)为280mm/a(约为现代的两倍)。通过定量恢复该区30.0ka B P以来降水量变化,为认识西藏高原湖泊演化和古环境、古季风演化提供了定量依据。  相似文献   

5.
We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0-2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau.  相似文献   

6.
This paper presents selected world maps of lake-level fluctuations since 30,000 yr B.P. These are based on a literature survey of 141 lake basins with radiocarbon-dated chronologies. The resulting patterns are subcontinental in scale and show orderly variations in space and time. They reflect substantial changes in continental precipitation, evaporation, and runoff, which are due to glacial/interglacial fluctuations in the atmospheric and oceanic circulations. In the tropics, high lake levels are essentially an interglacial or interstadial phenomenon, although there are important exceptions. Since extensive lakes during the Holocene corresponded with relatively high sea-surface temperatures, and therefore presumably with high evaporation rates on land, they are interpreted as the result of higher precipitation. Tropical aridity culminated in most areas at, or just after, the glacial maximum, although the present day is also characterized by a below-average abundance of surface water. In extratropical regions the mapped patterns are more complex. They vary markedly with latitude and proximity to major ice sheets. In these areas, evidence is at present insufficient to evaluate the relative contributions of precipitation and temperature to the observed lake-level record.  相似文献   

7.
This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake–groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km2, located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E08 m3 rainfall, 8.15 E07 m3 evapotranspiration, 1.90 E06 m3 runoff, 1.55 E07 m3 groundwater recharge, 6.01 E06 m3 groundwater discharge to the lake, 9.54 E06 m3 groundwater discharge to the river, 5.00 E05 m3 urban extraction and 4.90 E06 m3 lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance.  相似文献   

8.
Seismostratigraphical studies of the 11.8‐km2‐large and ~140‐m‐deep Lake Bolshoye Shchuchye, Polar Ural Mountains, reveal up to 160‐m‐thick acoustically laminated sediments in the lake basin. Using a dense grid of seismic lines, the spatial and temporal distributions of the sedimentary history have been reconstructed. Three regional seismic horizons have been identified and correlated with the well‐dated 24‐m‐long sediment core retrieved from the lake. Isopach maps constructed from the seismic data show four phases of sedimentation. A contour map of the deepest regional seismic reflector represents the earliest hemipelagic sedimentation in the lake. Three contour maps represent time intervals covering the last 23 cal. ka based on the well‐dated core stratigraphy from the lake. The detailed time constraints on the upper stratigraphical units in the lake allow calculation of the lake's development in terms of sediment fluxes and the denudation rates from the Last Glacial Maximum (LGM) to the present. The sedimentation in Lake Bolshoye Shchuchye has been dominated by hemipelagic processes during at least the last 24 cal. ka BP only locally interrupted by delta progradation and slope processes. A major shift in the sediment accumulation at c. 18.7 cal. ka BP is interpreted to mark the end of the local glacial maximum, greatly reduced denudation and the onset of the deglaciation period; this also demonstrates how fast the glaciers melted and possibly disappeared at the end of the LGM. The denudation rate during the Holocene is only a fifth of the LGM rate. The age of the oldest stratified sediments in Lake Bolshoye Shchuchye is not well constrained, but estimated as c. 50–60 ka.  相似文献   

9.
基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究   总被引:11,自引:0,他引:11  
基于多源多时相的数字遥感影像、地形图和DEM数据,利用遥感(RS)和地理信息系统(GIS)技术,对西藏玛旁雍错流域冰川地貌类型和空间分布进行了研究,并对流域内近30 a来冰川和湖泊的变化进行分析.结果表明:1974-2003年玛旁雍错流域冰川总面积减少了7.27 km2,平均退缩速率0.24 km2·a-1;湖泊总面积减少37.58 km2,平均退缩速率1.25 km2·a-1.多时相的监测表明,冰川在加速退缩,且阳坡冰川的消融速度大于阴坡,坡度陡、面积小的冰川消融比例大于坡度缓、面积较大的冰川;湖泊面积先减少后有所增加,但总面积还是减少了,不少小湖泊消失.分析流域附近气象资料可知,气温上升和降水量减少是玛旁雍错流域内冰川消融与退缩的主要原因.  相似文献   

10.
Sand hills in the Savannah River valley in Jasper County (South Carolina, USA) are interpreted as the remnants of parabolic eolian dunes composed of sand derived from the Savannah River and stabilized by vegetation under prevailing climate conditions. Optically stimulated luminescence ages reveal that most of the dunes were active ca. 40 to 19 ka ago, coincident with the last glacial maximum (LGM) through early deglaciation. Modern surface winds are not sufficient for sustained eolian sand transport. When the dunes were active, winds blew at velocities of at least 4 m/s from west to east, and some vegetation was present. The ratio of annual precipitation to potential evapotranspiration (P:PE) was less than the modern ratio of 1.23 and may have been < 0.30, caused by stronger winds (which would have resulted in greater evaporation) and/or reduced precipitation. The Savannah River dunes are part of a larger assemblage of eolian dunes that were active in the eastern United States during and immediately after the LGM, suggesting that eolian sediment behavior in this region has been controlled by regional forcing mechanisms during the Quaternary.  相似文献   

11.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

12.
The sedimentary record from Lake George provides the longest relatively continuous Quaternary continental sequence yet available from Australia, and may record one of the longest Upper Cainozoic lacustrine records in the world.

Palaeomagnetic analysis of a 36 m core from the lake floor identifies a sequence of deposition extending through the Brunhes and Matuyama, to the Gauss magnetic Chron. A longer core from the same site, but with incomplete recovery, extends to 72 m in lacustrine sediment; the age of the base of this core estimated by extrapolation is between 4.2 and 7 Ma. As there are still older and deeper sediments in the basin, extending to an estimated depth of 134 m, the age of the tectonic formation of the Lake George basin must be reckoned as Middle Miocene or older.

The pattern of facies organisation through time demonstrates a phase of deep water deposition extending from the base of the cored sequence (72 m) up to 51.5 m, at which time a major change took place. A disconformity developed at this level, associated with a period of deep weathering and a prolonged phase of slope mantle deposition (from 51.5 to 30.8 m). A gradual return to lacustrine environments, with diminishing proportion of slope wash detritus, resulted in increased rates of deposition coincident with the Jaramillo Subchron at 21.5 m. Thereafter, throughout the Brunhes magnetic Chron, lacustrine conditions dominated, varying from deep to lake dry conditions in a rhythmic fashion, and reflecting the major climatic oscillations of the past 700 000 years, becoming more regular in the past 400 000 years.

The pollen analytical record of the upper 8.6 m, covering the last 350 000 years, provides the main framework for the reconstruction of climatic history. The pollen and algal records indicate a sequence of vegetation and lake level changes, in which four major glacial/interglacial cycles are correlated with stages 1 to 10 of the 180 marine record. This provides by far the longest continuous biostratigraphic framework for the Quaternary period in Australia.

Comparison between the palaeoclimatic record and the lake level evidence shows that there is no simple correlation between the lake level fluctuations and the glacial/ interglacial oscillations. In fact, major falls in the lake level occured both at the peak of cold glacials and during the warm interglacials. Though the falls in the lake levels during a warm period (interglacial) can be explained by high rates of evaporation, drying during maximum cold can be explained best in terms of a fall in precipitation. Permanent to deep‐lake conditions generally occurred during intermediate cool periods following warm intervals, when perhaps the seas were still warm and low rates of evaporation on land prevailed. On the other hand, short periods of shallow to deep lake levels also occurred during warm (interglacial) periods, showing that these were associated with reasonably high rates of precipitation.  相似文献   

13.
Lyså, A., Jensen, M. A., Larsen, E., Fredin, O. & Demidov, I. N.* 2010: Ice‐distal landscape and sediment signatures evidencing damming and drainage of large pro‐glacial lakes, northwest Russia. Boreas, Vol. 40, pp. 481–497. 10.1111/j.1502‐3885.2010.00197.x. ISSN 0300‐9483. Sediments from river sections and the morphology of the upper reaches of Severnaya Dvina and Vychegda in northwest Russia show evidence of the existence of large ice‐dammed lakes in the area twice during the Weichselian. During the Late Weichselian, three separate ice‐dammed lakes (LGM lake(s)) existed, the largest one at about 135 m a.s.l. having a volume of about 1510 km3. Stepwise and rapid lake drainage is suggested to have taken place within less than 1000 years. The locations of various passpoints controlled the drainage, and when the lake was at its maximum level water spilled southeastwards into the Volga basin. Later, but before the lake water finally drained into the White Sea, water was routed northeastwards into the southeastern part of the Barents Sea. The oldest lake, the White Sea lake, existed around 67–57 ka ago, slightly in conflict with earlier palaeogeographic reconstructions regarding the chronology. The extent of the lake was constrained by, in addition to the Barents Sea ice‐sheet margin in the north, thresholds in the drainage basin. Later, one threshold was eroded and lowered during the LGM lake drainage. Given a lake level of about 115 m a.s.l., a lake area of about 2.5 × 104 km3 and a water volume of about 4800 km3, the lake drainage northwards and into the ocean probably impacted the ocean circulation.  相似文献   

14.
Generation of dust particles from the Owens Lake playa creates a severe air pollution hazard in the western United States. Much of the dust produced from the dry lakebed is derived from salts formed by evaporation of saline groundwater that often contains high concentrations of dissolved arsenic (As). The objectives of this research were to study the spatial distribution of dissolved arsenic in the shallow groundwater, and to examine factors affecting arsenic solubility and speciation. Evapoconcentration, redox potential, pH, and mineral solubility were examined as factors regulating arsenic biogeochemistry. Dissolved arsenic concentrations ranged from 0.1 to 96 mg L−1 and showed a general increase from the shoreline to the center of the lakebed. Arsenic concentrations were strongly correlated to electrical conductivity (EC) and δD suggesting that evapoconcentration is an important process regulating total As concentrations. Arsenite [As(III)] was the dominant form of inorganic arsenic at Eh values less than about −170 mV while arsenate [As(V)] was predominant at higher Eh values. Organic arsenic was negligible (<0.21%) in all shallow groundwater samples. Dissolved arsenic concentrations do not appear to be strongly regulated by solid-phase reactions. Solid-phase arsenic concentrations generally ranged between 4.0 and 42.6 mg kg−1 and a maximum concentration range (20 to 40 mg kg−1) was reached as solution concentration increased up to 80 mg L−1, indicating minimal sorption and/or precipitation of arsenic. Chemical equilibrium modeling indicated that orpiment (As2S3) was the only solid phase with a positive saturation index (indicating over-saturation), but only at high arsenic and sulfide concentrations. The findings of this research are important for assessing the potential environmental impacts of elevated arsenic concentrations on dust mitigation efforts taking place at Owens Dry Lake.  相似文献   

15.
Based on analysis of the well drilling core from Subei basin, the authors conclude that during the Late Cretaceous and Paleocene, Subei basin was linked with the sea and the deposit was affected by transgression. The cause of marine transgression may be that since Late Cretaceous and Paleocene tension power had predominated ground-stress conditions of the East China Sea and developed a series of half-graben-like basins filled by a huge thick sediment of the Early Tertiary in the shelf of Huabei-Bohai gulf, Subei-South Yellow Sea and East China Sea. Consequently, seawater transgressed from the East China Sea to the Yellow Sea and linked halfgraben-like basins on the shelf to the sea within a short period. During the sedimentation of the Late Cretaceous Taizhou Formation and Paleocene Funing Formation, the Subei basin had formed the ostracoda-enriched dark shale, including predominantly the whole basin E1 f 2 Formation and E1 f 4 Formation and local K2 t 2 Formation, which became the main source rocks of the basin. The evidence of paleontology, minerals in rocks and geochemistry can help confirm the environment of the lake basin that developed during the Late Cretaceous and Paleocene. We generally designate this environment as “near sea lake basin” and the sea-transgressed layer and member as “transgression lake basin”.Whereas, it is generally called “inland lake and river alluvium plain” during the sedimentation of the Eocene Dainan Formation and Sanduo Formation. This research is not only significant to the paleogeographic reconstruction of the Subei basin during the Late Cretaceous and Paleocene, but also important in understanding the development and distribution of the source rocks and evaluating the potential of oil and gas generation. __________ Translated from Acta Sedimentologica Sinica, 2007, 25(3): 380–385 [译自: 沉积学报]  相似文献   

16.
178 groundwater and surface waters have been sampled from April to September 1994 in an endoreic basin located in the N of Mexico (Comarca Lagunera). In this area, groundwater has been exploited over the past century mainly for irrigation and cattle supply. Recent intensive pumping has caused the lowering of the water table at a rate of 1 m a−1 Chemical analyses have been performed on all collected samples and 37 of them have been selected for isotopic measurements (18O,2H,13C and14C). Water stable isotope contents (18O,2H) show an increasing evaporation of the groundwater towards the Nazas river. They also indicate that the recharge occurs from the Nazas river and from the mountains surrounding the depression (Sierra Madre Occidental). Water presents a large spatial variability of the chemical facies (SO4Ca, SO4ClNa, HCO3-Ca and HCO3-Na) which is in relation with (i) their interaction with the geological formations of the basin (carbonates, gypsum and various silicates) and (ii) evaporation. This evaporation occurs in the upper part of the unsaturated zone during infiltration especially for the groundwater sampled near the Nazas river. The14C activity varies between 110.4 (± 1.1) and 4.0 (±0.2) pmc. The13C contents of the total dissolved inorganic C (TDIC) range between −11.0 and −3.6‰. The calculated13C contents of the CO2 in equilibrium with the TDIC, varying between −18.4%0 to −10.9% indicate two origins of C in solution: the carbonate matrix (δ13C= +0.9‰) and the soil CO2 (δ13C from −27.7‰ to −21.7‰ for the cultivated areas). Mean residence times have been determined after correction of the initial activities for dead C from the rock matrix. The mean residence times confirm a modern recharge of the groundwater from the Nazas and indicate the presence of palaeowaters in the northern and southern parts of the basin (up to 30 ka BP).  相似文献   

17.
A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ~AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ~AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ~250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.  相似文献   

18.
末次盛冰期中国海古地理轮廓及其气候效应   总被引:6,自引:1,他引:6  
本文是联合国政府间海洋委员会西太平洋分委员会(IOC/WESTPAC)发起的“西太平洋古地理图编图计划”中国海部分的初步成果,用101个站位的14C测年和22个站位的氧同位素资料编制了本次盛冰期(20000—15000aB.P.)资料图、古地理图和古海洋图等三张图件。末次盛冰期低海面时中国海轮廓发生重大改观:陆架出露约1.55×106km;表层海流改组以及表层海水温度剧降(比现代低3.5—6℃),比当时同纬度开放大洋表层海水温度下降剧烈。海区面积减少和表层海水温度下降使中国海蒸发量大大降低。根据海陆蒸发速率差异和表层海水温度与蒸发作用之间的关系,估算出末次盛冰期中国海年蒸发量比现代降低约12×10(11)—20×10(11)m3,或相当现代中国年降雨量的1/5—1/3。同时,末次盛冰期陆架暴露、地表反照率增高使地表对太阳辐射吸收作用减弱。总之,冰期旋回中国海在气候变化中起着重要作用。然而,要获得中国气候演化中海洋因素的定量或半定量数据尚需大量实际资料和数值模拟方能实现。  相似文献   

19.
Experiments have been carried out to determine the temperature, oxygen fugacity (fO2) and compositional dependence of the tracer diffusion coefficient (D) of calcium in olivine. These data constrain the diffusion coefficient over the temperature range 900 to 1500°C for the three principal crystallographic axes. Well constrained linear relationships between the reciprocal of the absolute temperature and log(D) exist at any given oxygen fugacity. There is a strong dependence of the diffusion coefficient on oxygen fugacity with D ∝ fO2(1/3). This makes a knowledge of the T-fO2 path followed by geological samples a prerequisite for modelling Ca diffusion in olivine. The best fitting preexponential factor (Do) and activation energy (E) to the Arrhenius equation log (D) = log [Do exp(−E/RT)] + 0.31Δ log fO2 for Ca diffusion in olivine at a given oxygen fugacity (fO2*) are given by:diffusion along [100]: log [Do (m2/s)] = −10.78 ± 0.43; E = 193 ± 11 kJ/moldiffusion along [010]: log [Do (m2/s)] = −10.46 ± 0.37; E = 201 ± 10 kJ/moldiffusion along [001]: log [Do (m2/s)] = −10.02 ± 0.29; E = 207 ± 8 kJ/molwhere Δ log fO2 = log[fO2*] − log[10−12] with fO2* in units of bars. There is no measurable compositional dependence of the diffusion coefficient between Fo83 and Fo92. Diffusion in Fo100 has a much higher activation energy than in Fe-bearing olivine and has a weaker fO2 dependence.  相似文献   

20.
Lake Constance is one of Europe’s largest oligotrophic lakes and provides a water source for more than 4.5 million people in Germany and Switzerland. We present here a 12 month study on iodine concentrations, speciation and fluxes to and from the lake to gain a quantitative understanding of the limnic iodine cycle. Monthly water samples were obtained from all major tributaries (14) and the outflow to construct a mass-balance model. Sediment traps were also deployed in the lake for two years at two different stations. Total soluble iodine (TSI) in aqueous samples were analysed by ICP-MS and speciation (iodide, iodate and soluble organically bound iodine, SOI) by ion chromatography-ICP-MS. Iodine concentrations in the Alpine tributaries (1-2 μg l−1) decreased over the summer months due to increasing proportions of snow and glacial melt water from the Alps, while iodine levels in the lowland rivers (∼2-10 μg l−1) increased over the summer. Deposition of TSI to the catchment (16,340 kg I yr−1) was similar to the TSI out-flux by rivers (16,000 kg I yr−1). By also including the particulate riverine iodine flux out of the catchment (∼12,350 kg I yr−1) it is shown that the catchment is a net source of iodine, with the highest particulate fluxes coming from the Alpine rivers. The total TSI flux to the lake was 16,770 kg I yr−1, the largest proportion coming from the Alpenrhein (43%), followed by the Schussen (8%) and Bregenzer Ach (7.7%). Overall the mass-balance for TSI in the lake was negative, with more iodine flowing out of the lake than in (−2050 kg I yr−1; 12% of TSI in-flux). To maintain mass-balance, 8.8 μg I m−2 d−1 from the Obersee and 23 μg I m−2 d−1 from the Untersee must be released from the sediments into the water column. Thus, in comparison with the total iodine flux to the sediments measured by the sediment traps (4762-8075 kg I yr−1), up to 39% of the deposited iodine may be mobilised back into the lake. SOI was the dominant iodine fraction entering the lake, with a total flux of 10,290 kg I yr−1 (64% of TSI input), followed by iodate (3120 kg I yr−1) and iodide (2760 kg I yr−1). Net formation of SOI from iodide and iodate was also noted within the lake, with an estimated production of 6560 kg I yr−1, suggesting a strong role for biology in iodine cycling. In conclusion, organically bound iodine was the dominant iodine species in aqueous and solid phases in Lake Constance, despite low DOC concentrations (<2 mg l−1), and thus is expected to play an important role in iodine cycling in most freshwater environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号