首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleoecological (pollen, phytolith, and wood) analyses of sediments, radiocarbon dated 33,000 to 26,000 yr B.P., from two sites in Ecuadorian Amazonia provide data that suggest a cooling of ca. 7.5°C below present in equatorial lowlands from 33,000 to 30,000 yr B.P. A period of warning followed in which novel species assemblages, a blend of montane and lowland floral components, persisted for at least 4000 years. These data of forest community change, from sites lying within the postulated glacial rain forest Napo refugium, provide the strongest paleoecological refutation of the refugial hypothesis yet obtained. The large temperature depression at ca. 30,000 yr B.P. allows the possibility that if maximum cooling at the equator was synchronous with the last glacial maximum (LGM) of the northern hemisphere, freezing temperatures would have been experienced in parts of lowland Amazonia between 25,000 and 18,000 B.P.  相似文献   

2.
Kosipe, an upland valley at 2000 m altitude in the Owen Stanley Ranges of southeastern New Guinea, is known for the discovery of large stone waisted blades dated to 31 400 cal a BP. The purpose of these tools and the nature of occupation are unknown. The altitude is too high for most food crops today and may have stood close to the treeline during the last glaciation. Three pollen and charcoal diagrams from a large swamp in the Kosipe Valley provide a record of swamp and dryland changes for more than 50 000 years. There have been considerable fluctuations in vegetation on the slopes and on the swamp which reflect both environmental change and anthropogenic influences. A gymnosperm-rich forest at the base is replaced by mountain forest dominated by Nothofagus about 42 000 years ago. Fire first becomes apparent across the swamp around 40 000 years ago but is not common during the time when subalpine herbs reach their best representation. Tree fern-rich grasslands form a mosaic with montane forest in a near-treeline environment. The Pleistocene–Holocene boundary is marked by a decline in Nothofagus and increase in lower montane mixed forest taxa. Charcoal increases before this time and the swamp vegetation becomes more grass-rich. Charcoal is at its maximum through the last 3000 years possibly reflecting climate variability as well as sedentary occupation and agriculture on the swamp margin. Supplementary pollen diagrams from two higher altitude sites support the evidence from the Kosipe Swamp cores. Charcoal, local catchment erosion and increases in disturbance taxa become more widespread in the last 5000 years at these sites, suggesting that local settlement at Kosipe may have lagged behind general landscape use by populations from lower altitudes.  相似文献   

3.
Two pollen records from La Chonta bog (2310 m altitude) and one pollen record of a soil profile (2430 m altitude) at a short distance from the bog permit the reconstruction of the vegetational history and climatic sequence of probably the last ca. 80 000 yr of the Cordillera de Talamanca, Costa Rica. The three pollen records can be correlated on the basis of three radiocarbon-dated horizons (> 39 900 yr BP, 34 850 yr BP and 1390 yr BP) and palynostratigraphy. Pollen concentration data provide indirect time control between radiocarbon-dated horizons of the La Chonta 2 core. During the Early Glacial successive fluctuations of the upper forest line occurred between ca. 2300 m and 2800 m altitude and the bog is alternately situated close to the subalpine rainforest belt and in the uppermontane rainforest belt. During the Pleniglacial (ca. 50 000-13 000 yr BP) the forest line fell to ca. 2000 m altitude and paramo vegetation surrounded the La Chonta site. During the Late Glacial the forest line shifted rapidly in ca. 270 yr to 2700–2800 m altitude and the lake became surrounded by Quercus-dominated upper montane rainforest during a period of ca. 1655 yr. A distinct climate cooling (by 2–2.5°C) followed during ca. 580 yr and the upper forest line dropped to ca. 2400 m altitude. This temperature rebound is probably equivalent to the Younger Dryas event. In the depression extensive Alnus carr and swamp vegetation developed. Finally, during the Holocene, the forest line shifted to 3300–3500 m elevation and the lower montane rainforest reached close to ca. 2300 m altitude. In the later part of the Holocene subparamo scrub with Hypericum, Puya, Compositae, Escallonia and Ericaceae largely replaced Alnus carr and the regional and local vegetation closely resembles the presentday composition. During the Last Glacial to Holocene transition a shift of the upper forest line of ca. 1400 m is inferred, corresponding to a glacial temperature depression at 2300 m altitude of ca. 8°C.  相似文献   

4.
The late glacial and the transition towards the Holocene marked a period of significant environmental change at a global scale. In western Central Mexico, few records span beyond the Holocene, and little is known about Pleistocene climatic and environmental variability. Here we report on the pollen record of a composite sequence made of three cores that cover the last 50 ka (thousands of calibrated radiocarbon years before present) in the Zacapu Basin, western Central Mexico (~1970 m asl). The conjunction of modern pollen rain from the area with the composite fossil pollen sequence from cores Cantabria, Cantabria 1 and CEMCA Point‐1 provided a detailed history of the vegetation of the area. Recognition of modern environmental patterns through individual modern pollen taxa proved difficult, but multivariate analysis separated different vegetation types. No‐modern‐analog communities relative to the modern vegetation cover of the area were evident, especially during periods of drought. Apparently, summer precipitation was significant before 40 ka and after the deglaciation. However, this moisture source declined from ~40 to 10 ka because tradewinds from the Gulf of Mexico were blocked by the eastern mountains of Central Mexico as a result of lower temperatures. By contrast, westerly and northerly winds were enhanced by maximum ice cover from ~19 to 17 ka, providing abundant winter precipitation and therefore preventing extreme drought in the area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Pollen spectra from cores of organic spring deposits from the Transvaal provide evidence for the climatic evolution of the province during the last 35,000 yr B.P. or more. The past climatic phases are derived from palynological reconstructions of past vegetation types by comparison of fossil pollen data with modern surface pollen spectra from various localities. Evidence is provided for an early moist, cool phase with relatively mesic bushveld and expanded montane forest in the central Transvaal, followed by a drier period with drier bushveld which probably lasted until approximately 25,000 yr B.P. During the next phase, which at the latest ended about 11,000 yr B.P., the temperatures were probably 5°–6°C cooler than at present. At that time bushveld vegetation in the central Transvaal was replaced by open grassland with macchia elements. Climatic amelioration came and semiarid savanna returned to the plains, at first gradually and then developing into a warm Kalahari thornveld-type vegetation. After 6000 yr B.P. it apparently became slightly wetter and a more broad-leafed bushveld developed. About 4000 yr B.P. it again became cooler and slightly wetter and the bushveld vegetation on the central and northern plains was comparable to present open upland types. After 2000 yr B.P. conditions gradually became warner until about 1000 yr B.P., when the modern climate of the central Transvaal bushveld originated.  相似文献   

6.
Late Pleistocene and Holocene vegetational and climatic change have been studied palynologically at a site at 1750 m elevation in the subandean vegetation belt near Popayán, in the southern Colombian Andes. Time control on the pollen record is based on six AMS 14C ages, ranging from possibly Middle Pleniglacial time (around 50000 yr BP) to 1092 ± 44 yr BP. Because of the presence of two hiatuses only the Middle Pleniglacial and Late Holocene periods (the last 2300 yr BP) are represented. Pollen data indicate the presence of closed subandean forest during glacial time. Changes in the contribution of pollen originating from the uppermost and lowermost subandean forest belts, changes in the contribution of a number of other subandean forest taxa, and changes in species composition between the three pollen zones, suggest that the climate during the Middle Pleniglacial was markedly colder, and perhaps also wetter, than during the Late Holocene. Pollen assemblages from the Late Holocene indicate that the landscape has been affected by deforestation and agriculture since at least 2300 yr BP, but that human impact decreased in the last 780 yr BP. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

8.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Pollen, spore, macrofossil and stable isotope (C and N) analyses from a 266-cm sediment core collected from a swamp on the Eastern Arc Mountains, Tanzania, are used to reconstruct vegetation and environmental history. An estimated time scale based on five 14C ages records approximately 38,000 yr. This palaeorecord is the first from this biodiversity hotspot and importantly extends through the last glacial maximum (LGM). The altitudinal transition from montane to upper montane forest shifted from 1700-1800 m (38,000 14C yr BP) to 1800-1900 m (35,000-29,000 14C yr BP). From 29,000 to 10,000 14C yr BP, it shifted from 1850-1950 m across the LGM to 1750-1800 m (during 10,000-3500 14C yr BP), and to present-day elevations at 2000 m during the last 3500 14C yr BP. The relative ecosystem stability across the LGM may be explained by the Indian Ocean's influence in maintaining continuous moist forest cover during a period of East African regional climate aridity. During the late Holocene, presence of abundant coprophilous fungi and algal blooms demonstrates increasing human impact. Neurospora spores indicate frequent fires, coinciding with clear signals of decline in Podocarpus and Psychotria trees that possibly represent selective logging.  相似文献   

10.
This study presents new ages for the northwest section of the Laurentide Ice Sheet (LIS) glacial chronology from material recovered from two retrogressive thaw slumps exposed in the Richardson Mountains, Northwest Territories, Canada. One study site, located at the maximum glacial limit of the LIS in the Richardson Mountains, had calcite concretions recovered from aufeis buried by glacial till that were dated by U/Th disequilibrium to 18,500 cal yr BP. The second site, located on the Peel Plateau to the east yielded a fossil horse (Equus) mandible that was radiocarbon dated to ca. 19,700 cal yr BP. These ages indicate that the Peel Plateau on the eastern flanks of the Richardson Mountains was glaciated only after 18,500 cal yr BP, which is later than previous models for the global last glacial maximum (LGM). As the LIS retreated the Peel Plateau around 15,000 cal yr BP, following the age of the Tutsieta phase, we conclude that the presence of the northwestern margin of the LIS at its maximum limit was a very short event in the western Canadian Arctic.  相似文献   

11.
南海南部末次冰期以来的孢粉记录及其气候意义   总被引:24,自引:0,他引:24  
李逊  孙湘君 《第四纪研究》1999,19(6):526-535
本文通过分析南海南部17964柱状样的孢粉记录,重建了该地区26000aB.P.以来的植被和气候变化历史。南海南部末次盛冰期时高山雨林的范围可能是现在的2~3倍,表明气温明显下降;从末次盛冰期到冰消期,巽他陆架一直为热带低地雨林及红树林占据,表明在此期间湿度没有明显变化,但存在着千年级的准周期波动。这种波动一直持续到全新世中期。本地区在2000aB.P.以来芒萁孢子大量增加,一些高山雨林的成分重新出现,可能与人类活动所导致的低地植被的破坏有关。  相似文献   

12.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

14.
Late Quaternary vegetation history and environmental changes in a biodiverse tropical ecosystem are inferred from pollen, charcoal and carbon isotope evidence derived from a ∼ 48,000-yr sedimentary record from the Uluguru Mountains, a component of the Eastern Arc Mountains of Kenya and Tanzania. Results indicate that Eastern Arc forest composition has remained relatively stable during the past ∼ 48,000 yr. Long-term environmental stability of the Eastern Arc forests has been proposed as a mechanism for the accumulation and persistence of species during glacial periods, thus resulting in the diverse forests observed today. The pollen and isotope data presented here indicate some marked changes in abundance but no significant loss in moist forest taxa through the last glacial maximum, thereby providing support for the long-term environmental stability of the Eastern Arc. Anthropogenic activities, including burning and forest clearance, were found to play a moderate role in shaping the mosaic of forest patches and high-altitude grasslands that characterise the site today; however, this influence was tempered by the inaccessibility of the mountain.  相似文献   

15.
Vegetation history during the Holocene is interpreted from the pollen and sedimentary records of nine sections of peat deposits located in sedge tundra at sites in the northern and northwestern parts of the Prince William Sound region. Basal radiocarbon ages of the deposits are between 10,015 and 580 yr B.P. Modern surface pollen data from these and 25 additional sites, ranging from lowlands to an altitude of 675 m in the alpine tundra, were used to aid in the interpretation of the fossil records. Both frequency and influx pollen diagrams of the oldest section disclose a sequence of communities beginning with sedge tundra, containing thickets of willow and alder, followed by alder, which became predominant at about 8300 yr B.P. Later, alder declined, and an inferred growth of sedge tundra and the establishment of colonies of mountain hemlock and Sitka spruce with some western hemlock occurred about 2680 yr B.P. Finally, regrowth of sedge tundra accompanied by the development of forest communites took place over the past 2000 yr. The influence of glacier advances on the vegetation in the fjords occurred during Neoglacial episodes dated at 3200–2500 yr B.P. and during recent centuries. Regional Holocene tectonic activity was also an influential factor, especially at the time of the 1964 earthquake.  相似文献   

16.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

17.
A Holocene record of pollen, macrofossils, testate amoebae and peat humification is presented from a small montane bog. Sediment accumulation began before 9000 yr BP, but peat growth not until ca. 7000 BP. From 12 000 to 7000 yr BP, a shrub–grassland dominated under a dry climate, with increasing conifer forest and tall scrub from ca. 9600 yr BP. At 7000 yr BP a dense montane–subalpine low conifer forest established under a moist, cool climatic regime. Between 7000 and 700 yr BP the bog surface was shrubby, tending to be dry but with highly variable surface wetness. The catchment was affected by major fire at least four times between 4000 and 1000 yr BP. Both fire and bog surface wetness may have been linked to ENSO-caused variations in rainfall. Cooler, cloudier winters and disturbance by fire promoted the expansion of the broadleaf tree Nothofagus menziesii between 4000 yr BP and 1300 yr BP at the expense of the previous conifer forest–scrub vegetation. Polynesian fires (ca. 700 yr BP) reduced the vegetation to tussock grassland and bracken. Deforestation did not markedly affect the hydrology of the site. European pastoralism since ad 1860 has increased run-off and rising water tables in the bog have led to a Sphagnum-dominated cover. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Randomisation tests on boulder weathering data distinguish moraines of four different ages in the Rongbuk Valley, all deposited by valley glaciers flowing northward into Tibet from the Himalaya. Lichenometry utilising subgenus Rhizocarpon distinguishes two groups of moraines, those <100 yr old and those older than several thousand years. The degree of soil development has a similar, limited utility in relative-age dating these moraines. The radiocarbon ages of calcium carbonate coatings in the lower horizons of moraine soils provide minimum-limiting ages of 1900 yr BP for the penultimate advance of the Rongbuk glacier (Samdopo moraine) and 9500 yr BP for the Rongbuk moraine, the moraine suggested by previous workers to represent the last glacial maximum. Equilibrium-line depression associated with the Rongbuk moraine probably was slight, <200 m. The small magnitude of this depression relative to glaciers in other mountain ranges could relate to a weakening of the monsoon in full glacial times, recent tectonic uplift, and/or to the insensitivity of these high-altitude glaciers to lowering temperatures in the rain shadow of Mount Everest.  相似文献   

19.
We document frequent, rapid, strong, millennial-scale paleovegetation shifts throughout the late Pleistocene, within a 100,000+ yr interval (~ 115–15 ka) of terrestrial sediments from the mid-Atlantic Region (MAR) of North America. High-resolution analyses of fossil pollen from one core locality revealed a continuously shifting sequence of thermally dependent forest assemblages, ranging between two endmembers: subtropical oak-tupelo-bald cypress-gum forest and high boreal spruce-pine forest. Sedimentary textural evidence indicates fluvial, paludal, and loess deposition, and paleosol formation, representing sequential freshwater to subaerial environments in which this record was deposited. Its total age–depth model, based on radiocarbon and optically stimulated luminescence ages, ranges from terrestrial oxygen isotope stages (OIS) 6 to 1. The particular core sub-interval presented here is correlative in trend and timing to that portion of the oxygen isotope sequence common among several Greenland ice cores: interstades GI2 to GI24 (≈ OIS2–5 d). This site thus provides the first evidence for an essentially complete series of ‘Dansgaard–Oeschger’ climate events in the MAR. These data reveal that the ~ 100,000 yr preceding the Late Glacial and Holocene in the MAR of North America were characterized by frequently and dynamically changing climate states, and by vegetation shifts that closely tracked the Greenland paleoclimate sequence.  相似文献   

20.
Data from a transect of four cores collected in the Makepeace Cedar Swamp, near Carver, Massachusetts, record past changes in deposition, vegetation, and water level. Time series of palynological data provide a 14,000-yr record of regional and local vegetation development, a means for biostratigraphic correlation and dating, and information about changes in water level. Differences in records among cores in the basin show that water level decreased at least 1.5 m between 10,800 and 9700 cal yr B.P., after which sediment accumulation was slow and intermittent across the basin for about 1700 yr. Between 8000 and 5600 cal yr B.P., water level rose 2.0 m, after which slow peat accumulation indicates a low stand about the time of the hemlock decline at 5300 ± 200 cal yr B.P. Dry conditions may have continued after this time, but by 3200 cal yr B.P., the onset of peat accumulation in shallow cores indicates that water level had risen to close to its highest postglacial level, where it is today. Peat has accumulated across the whole basin since 3200 cal yr B.P. Data from Makepeace and the Pequot Cedar Swamp, near Ledyard, Connecticut, indicate an early Holocene dry interval in southern New England that began 11,500 yr ago near the end of the Younger Dryas interval. The dry conditions prevailed between 10,800 and 8000 cal yr B.P. and coincide with the arrival and later rise to dominance of white pine trees (Pinus strobus) both regionally and near the basins. Our results indicate a climatic cause for the “pine period” in New England.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号