首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
We use a model of polarized Galactic emission developed by the Planck collaboration to assess the impact of foregrounds on B -mode detection at low multipoles. Our main interest is in applications of noisy polarization data and in particular in assessing the feasibility of B -mode detection by Planck . This limits the complexity of foreground subtraction techniques that can be applied to the data. We analyse internal linear combination techniques and show that the offset caused by the dominant E -mode polarization pattern leads to a fundamental limit of   r ∼ 0.1  for the tensor–scalar ratio even in the absence of instrumental noise. We devise a simple, robust, template fitting technique using multifrequency polarization maps. We show that template fitting using Planck data alone offers a feasible way of recovering primordial B -modes from dominant foreground contamination, even in the presence of noise on the data and templates. We implement and test a pixel-based scheme for computing the likelihood function of cosmological parameters at low multipoles that incorporates foreground subtraction of noisy data.  相似文献   

7.
The complete set of data from the Tenerife 10-GHz (8° FWHM) twin-horn, drift scan experiment is described. These data are affected by both long-term atmospheric baseline drifts and short-term noise. A new maximum entropy procedure, utilizing the time invariance and spatial continuity of the astronomical signal, is used to achieve a clean separation of these effects from the astronomical signal, and to deconvolve the effects of the beam-switching. We use a fully positive/negative algorithm to produce two-dimensional maps of the intrinsic sky fluctuations. Known discrete sources and Galactic features are identified in the deconvolved map. The data from the 10-GHz experiment, after baseline subtraction with MEM, are then analysed using conventional techniques, and new constraints on Galactic emission are made.  相似文献   

8.
We measured a sample of 150 pulsar rotation measures (RMs) using the 20-cm receiver of the Parkes 64-m radio telescope. 46 of the pulsars in our sample have not had their RM values previously published, whereas 104 pulsar RMs have been revised. We used a novel quadratic fitting algorithm to obtain an accurate RM from the calibrated polarization profiles recorded across 256 MHz of receiver bandwidth. The new data are used in conjunction with previously known dispersion measures and the NE2001 electron-density model to study models of the direction and magnitude of the Galactic magnetic field.  相似文献   

9.
Large patterns could exist on the microwave sky as a result of various non-standard possibilities for the large-scale Universe – rotation or shear, non-trivial topology, and single topological defects are specific examples. All-sky (or nearly all-sky) CMB data sets allow us, uniquely, to constrain such exotica, and it is therefore worthwhile to explore a wide range of statistical tests. We describe one such statistic here, which is based on determining gradients and is useful for assessing the level of 'preferred directionality' or 'stripiness' in the map. This method is more general than other techniques for picking out specific patterns on the sky, and it also has the advantage of being easily calculable for the mega-pixel maps which will soon be available. For the purposes of illustration, we apply this statistic to the four-year COBE DMR data. For future CMB maps, we expect this to be a useful statistical test of the large-scale structure of the Universe. In principle, the same statistic could also be applied to sky maps at other wavelengths, to CMB polarization maps, and to catalogues of discrete objects. It may also be useful as a means of checking for residual directionality (e.g. from Galactic or ecliptic signals) in maps.  相似文献   

10.
We use data from the Tenerife 10-, 15- and 33‐GHz beam-switching experiments along with the COBE 53- and 90‐GHz data to separate the cosmic microwave background (CMB) signal from the Galactic signal, and create two maps at high Galactic latitude. The new multi-MEM technique is used to obtain the best reconstruction of the two channels. The two maps are presented, and known features are identified within each. We find that the Galactic contribution to both the 15- and 33-GHz Tenerife data is small enough to be ignored when compared with the errors in the data and the magnitude of the CMB signal.  相似文献   

11.
We present a new map-making method for cosmic microwave background (CMB) measurements. The method is based on the destriping technique, but it also utilizes information about the noise spectrum. The low-frequency component of the instrument noise stream is modelled as a superposition of a set of simple base functions, whose amplitudes are determined by means of maximum-likelihood analysis, involving the covariance matrix of the amplitudes. We present simulation results with  1/ f   noise and show a reduction in the residual noise with respect to ordinary destriping. This study is related to Planck Low Frequency Instrument (LFI) activities.  相似文献   

12.
The map-making step of cosmic microwave background (CMB) data analysis involves linear inversion problems that cannot be performed by a brute-force approach for the large time-lines of today. In this paper we present optimal vector-only map-making methods, which are an iterative COBE method, a Wiener direct filter and a Wiener iterative method. We apply these methods on diverse simulated data, and we show that they produce very well restored maps, by removing nearly completely the correlated noise that appears as intense stripes on the simply pixel-averaged maps. The COBE iterative method can be applied to any signals, assuming the stationarity of the noise in the time-line. The Wiener methods assume both the stationarity of the noise and the sky, which is the case for CMB-only data. We apply the methods to Galactic signals too, and test them on balloon-borne experiment strategies and on a satellite whole-sky survey.  相似文献   

13.
We investigate the Gaussianity of the 4-yr COBE DMR data (in HEALPix pixelization) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale–scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE DMR data.  相似文献   

14.
15.
We investigate the power of wavelets in detecting non-Gaussianity in the cosmic microwave background (CMB). We use a wavelet-based method on small simulated patches of the sky to discriminate between a pure inflationary model and inflationary models that also contain a contribution from cosmic strings. We show the importance of the choice of a good test statistic in order to optimize the discriminating power of the wavelet technique. In particular, we construct the Fisher discriminant function, which combines all the information available in the different wavelet scales. We also compare the performance of different decomposition schemes and wavelet bases. For our case, we find that the Mallat and a ` trous algorithms are superior to the 2D-tensor wavelets. Using this technique, the inflationary and strings models are clearly distinguished even in the presence of a superposed Gaussian component with twice the rms amplitude of the original cosmic string map.  相似文献   

16.
We present the wide-field imaging and polarimetry at  ν= 20 GHz  of seven most extended, bright  ( S total≥ 0.50 Jy)  , high-frequency selected radio sources in the southern sky with declinations  δ < −30°  . Accompanying the data are brief reviews of the literature for each source. The results presented here aid in the statistical completeness of the Australia Telescope 20-GHz Survey: the Bright Source Sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We were able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density  (∼0.50 ± 0.06 Jy)  on a scale of 10 arcmin. Six out of the seven sources have a clearly detected compact radio core in our images, with either a null detection or less than 2 per cent detection of polarized emission from the nuclei. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however, PKS 1333−33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.  相似文献   

17.
We have estimated the cosmic microwave background (CMB) variance from the three-year Wilkinson Microwave Anisotropy Probe ( WMAP ) data, finding a value which is significantly lower than the one expected from Gaussian simulations using the WMAP best-fitting cosmological model, at a significance level of 98.7 per cent. This result is even more prominent if we consider only the North ecliptic hemisphere (99.8 per cent). Different analyses have been performed in order to identify a possible origin for this anomaly. In particular, we have studied the behaviour of single-radiometer and single-year data as well as the effect of residual foregrounds and 1/f noise, finding that none of these possibilities can explain the low value of the variance. We have also tested the effect of varying the cosmological parameters, finding that the estimated CMB variance tends to favour higher values of n s than the one of the WMAP best-fitting model. In addition, we have also tested the consistency between the estimated CMB variance and the actual measured CMB power spectrum of the WMAP data, finding a strong discrepancy. A possible interpretation of this result could be a deviation from Gaussianity and/or isotropy of the CMB.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号