首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of methods to estimate debris flow velocity   总被引:6,自引:2,他引:6  
Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities.  相似文献   

2.
以往对于怒江流域泥石流的研究大多关注支流泥石流对干流的影响,而对支流内群发性泥石流易发性的研究较少。迪麻洛河为怒江左岸一级支流,因其凸型斜坡地貌、变质软岩分布、断裂剪切破坏及新构造运动间歇性抬升产生的丰富物源等特征在怒江上游具有代表性。野外调查揭示,流域内泥石流主要分为沟谷型、坡面型和沟谷-坡面复合型3种,且多发育于迪麻洛河左岸。基于水文响应单元,从地质、地貌、降雨量、物源条件、人类工程活动等方面选取8项评价因子。针对各因子对不同类型泥石流影响程度的不同,采用层次分析法赋予各因子不同的权重。最后结合信息量法,分类剖析不同类型泥石流的易发性。结果表明:各类泥石流易发性高和极高的地区主要地层为石炭系第四段(Cd)、第五段(Ce)等岩性软弱地层; 主要沿着道路建设等人类工程活动强烈的地区分布; 越靠近断裂带易发性越高。随着易发性等级的提高,泥石流发育比例和相对发育比例也相应增高; 各类型泥石流AUC达83.34%、90.07%和84.39%,评价结果合理,可为怒江支流泥石流防治规划与预测预报提供科学依据,为西南深切峡谷变质软岩区群发性泥石流防灾减灾提供理论和技术参考。  相似文献   

3.
Debris flows are more frequent in central Taiwan, because of its mountainous geography. For example, many debris flows were induced by Typhoon Herb in 1996. The Chi-Chi earthquake with a magnitude of 7.3, which took place in 1999 in central Taiwan, induced many landslides in this region. Some landslides turned into debris flows when Typhoon Toraji struck Taiwan in 2001. This study investigates the characteristics of the gullies where debris flows have occurred for a comparison. Aerial photos of these regions dated in 1997 (before the earthquake) and 2001 (after the earthquake) are used to identify the occurrence of gully-type debris flows. A Geographic Information System (GIS) is applied to acquire hydrological and geomorphic characteristics: stream gradient, stream length, catchment gradient, catchment area, form factor, and geology unit of these gullies. These characteristics in different study regions are presented in a statistical approach. The study of how strong ground motion affects the debris flows occurrence is conducted. The characteristics of the debris flow gullies triggered by typhoons before and after the Chi-Chi earthquake are quantitatively compared. The analysis results show that a significant transformation in the characteristics was induced by the Chi-Chi earthquake. In general, the transformation points out a lower hydrological and geomorphic threshold to trigger debris flows after the Chi-Chi earthquake. The susceptibility of rock units to strong ground motion is also examined. The analysis of debris flow density and accumulated rainfall in regions of different ground motion also reveal that the rainfall threshold decreases after the Chi-Chi earthquake.  相似文献   

4.
In this study the factors affecting the retrogressive Yaka Landslide, its mechanism and the hazard of debris flow on the town of Yaka are investigated. In the landslide area, the first landslide was small and occurred in March 2006 on the lower part of the Alaard?ç Slope near the Gelendost District town of Yaka (Isparta, SW Turkey). The second, the Yaka Landslide, was large and occurred on 19 February 2007 in the soil-like marl on the central part of Alaard?ç Slope. The geometry of the failure surface was circular and the depth of the failure surface was about 3 m. Following the landslide, a 85,800 m3 of displaced material transformed to a debris flow. Then, the debris flow moved down the Eglence Valley, traveling a total distance of about 750 m. The town of Yaka is located 1,600 m downstream of Eglence Creek and hence poses a considerable risk of debris flow, should the creek be temporarily dammed as a result of further mass movement. Material from the debris accumulation has been deposited on the base of Eglence Valley and has formed a debris-dam lake behind a debris dam. Trees, agricultural areas, and weirs in the Eglence Creek have seen serious damage resulting from the debris flow. The slope angle, slope aspect and elevation of the area in this study were generated using a GIS-based digital elevation model (DEM). The stability of the Alaard?ç Slope was assessed using limit equilibrium analysis with undrained peak and residual shear strength parameters. In the stability analyses, laboratory test results performed on the soil-like marls were used. It was determined that the Alaard?ç Slope is found to be stable under dry conditions and unstable under completely saturated conditions. The Alaard?ç Slope and its vicinity is a paleolandslide area, and there the factor of safety for sliding was found to be about 1.0 under saturated conditions. The Alaard?ç Slope and the deposited earthen materials in Eglence Creek could easily be triggered into movement by any factors or combination of factors, such as prolonged or heavy rainfall, snowmelt or an earthquake. It was established that the depth of the debris flow initiated on the Yaka Landslide reached up to 8 m in Eglence Creek at the point it is 20 m wide. If this deposited material in Eglence Creek is set into motion, the canal that passes through Yaka, with its respective width and depth of 7 and 1.45 m, could not possibly discharge the flow. The destruction or spillover of this canal in Yaka could bring catastrophic loss to residents which are located within 3–5 m of the bank of the canal. Furthermore, if material present in the landslide source area slides and this displaced material puts pressure on the unstable deposited material in Eglence Creek, even more catastrophic loss would occur to the town of Yaka. In this study, it was determined that debris flows are still a major hazard to Yaka and its population of 3,000. The results provided in this study could help citizens, planners, and engineers to reduce losses caused by existing and future landslides and debris flow in rainfall and snowmelt conditions by means of prevention and mitigation.  相似文献   

5.
The Zymoetz River landslide is a recent example of an extremely mobile type of landslide known as a rock slide–debris flow. It began as a failure of 900,000 m3 of bedrock, which mobilized an additional 500,000 m3 of surficial material in its path, transforming into a large debris flow that traveled over 4 km from its source. Seasonal snow and meltwater in the proximal part of the path were important factors. A recently developed dynamic model that accounts for material entrainment, DAN3D, was used to back-analyze this event. The two distinct phases of motion were modeled using different basal rheologies: a frictional model in the proximal path and a Voellmy model in the distal path, following the initiation of significant entrainment. Very good agreement between the observed and simulated results was achieved, suggesting that entrainment capabilities are essential for the successful simulation of this type of landslide.  相似文献   

6.
This paper presents a neural network (NN) based model to assess the regional hazard degree of debris flows in Lake Qionghai Watershed, China. The NN model was used as an alternative for the more conventional linear model MFCAM (multi-factor composite assessment model) in order to effectively handle the nonlinearity and uncertainty inherent in the debris flow hazard analysis. The NN model was configured using a three layer structure with eight input nodes and one output node, and the number of nodes in the hidden layer was determined through an iterative process of varying the number of nodes in the hidden layer until an optimal performance was achieved. The eight variables used to represent the eight input nodes include density of debris flow gully, degree of weathering of rocks, active fault density, area percentage of slope land greater than 25° of the total land (APL25), frequency of flooding hazards, average covariance of monthly precipitation by 10 years (ACMP10), average days with rainfall >25 mm by 10 years (25D10Y), and percentage of cultivated land with slope land greater than 25° of the total cultivated land (PCL25). The output node represents the hazard-degree ranks (HDR). The model was trained with the 35 sets of data obtained from previous researches reported in literatures, and an explicit uncertainty analysis was undertaken to address the uncertainty in model training and prediction. Before the NN model is extrapolated to Lake Qionghai Watershed, a validation case, different from the above data, is conducted. In addition, the performances of the NN model and the MFCAM were compared. The NN model predicted that the HDRs of the five sub-watersheds in the Lake Qionghai Watershed were IV, IV, III, III, and IV–V, indicating that the study area covers normal hazard and severe hazard areas. Based on the NN model results, debris flow management and economic development strategies in the study are proposed for each sub-watershed.  相似文献   

7.
Debris flow is one of the most destructive mass movements. Sometimes regional debris flow susceptibility or hazard assessments can be more difficult than the other mass movements. Determination of debris accumulation zones and debris source areas, which is one of the most crucial stages in debris flow investigations, can be too difficult because of morphological restrictions. The main goal of the present study is to extract debris source areas by logistic regression analyses based on the data from the slopes of the Barla, Besparmak and Kapi Mountains in the SW part of the Taurids Mountain belt of Turkey, where formation of debris material are clearly evident and common. In this study, in order to achieve this goal, extensive field observations to identify the areal extent of debris source areas and debris material, air-photo studies to determine the debris source areas and also desk studies including Geographical Information System (GIS) applications and statistical assessments were performed. To justify the training data used in logistic regression analyses as representative, a random sampling procedure was applied. By using the results of the logistic regression analysis, the debris source area probability map of the region is produced. However, according to the field experiences of the authors, the produced map yielded over-predicted results. The main source of the over-prediction is structural relation between the bedding planes and slope aspects on the basis of the field observations, for the generation of debris, the dip of the bedding planes must be taken into consideration regarding the slope face. In order to eliminate this problem, in this study, an approach has been developed using probability distribution of the aspect values. With the application of structural adjustment, the final adjusted debris source area probability map is obtained for the study area. The field observations revealed that the actual debris source areas in the field coincide with the areas having high probability values on this final map.  相似文献   

8.
Temporary dams can be formed by the sudden injection of debris flow into main streams by some favorable geomorphologic and hydraulic conditions, resulting in extensive inundations upstream and catastrophic floods downstream due to dam breaches and consequently dramatic changes of channels and valleys. Expeditious means of assessing dam-forming potential are necessary, particularly in geologically active regions. Complete blockages or dam formations are significantly related to the discharge ratio and velocity ratio between the tributary and the main stream, the bulk density of the debris flow, confluent angles and the degree of unevenness of grain sizes. In order to set up a critical index/C for dam formation, 19 groups of flume tests were conducted. The results showed that there were three types of blockage in the intersections, and dam-forming processes were mainly controlled by the product of the dimensionless momentum ratio and the degree of unevenness of grain sizes in the debris flow. Complete blockages or dam formations occurred when C > 83.4, whereas semi-blockages were formed or no dams were formed when C < 71.5, which had been judged to be feasible by historical instances of dam formation in China. Dam failures commonly resulted from overtopping. No piping was observed in the course of dam failure, and the time elapsed between dams can be denoted by a linear relation with the momentum ratio.  相似文献   

9.
孙健  刘海  刘钦  卢玲 《华东地质》2021,(1):108-115
在总结皖南地区泥石流主要特征的基础上,重新梳理了沟谷型泥石流调查评价过程中的调查要素和评价因子,提出了沟谷型泥石流调查评价工作方法:对沟谷进行泥石流初步评价,以可搬运物源量和可淤积容量比值系数作为初步评判标准;以沟谷泥石流集水盆地形态特征、可搬运物源属性分布及储量、堆积区地形等特征作为主要调查内容,对易发性评价因子赋予分值.在此基础上,以皖南小容泥石流地质灾害调查为例,探讨更直观、更科学、更切合实际的沟谷型泥石流地质灾害调查评价工作方法.  相似文献   

10.
The long-term behaviour of andesite stratovolcanoes is characterised by a repetition of edifice growth phases followed by collapse. This cyclic pattern represents a natural frequency at varying timescales in the growth dynamics of stratovolcanoes worldwide. Around the > 130 ka Mt. Taranaki (Egmont volcano), New Zealand, coastal–cliff successions at 20–40 km distance comprise repeating packages of lithologically and sedimentologically distinctive mass-flow deposits. Varying depositional mechanisms and source properties of these units record growth and collapse cycles of the central edifice. These are used to construct a model for cyclic volcaniclastic sedimentation in the surrounds of stratovolcanoes. During edifice-construction phases, thick packages of tabular, predominantly monolithologic, hyperconcentrated-flow and debris-flow deposits accumulate with intercalated tephra beds. The mass-flow units commonly contain large proportions of fresh pumice or juvenile-lithic andesite. Intervals of quiescence separating eruptive periods are characterised by landscape re-adjustment, accompanied by deposition of fluvial and aeolian sediments, along with steady accretion of medial ash. In contrast, brief episodes of destruction are marked by wide-spread, distinctively clay-rich, polylithologic debris-avalanche deposits and related marginal debris flow units. The growth stages can be terminated by an eruption-triggered sector collapse, or by external forces once the edifice exceeds a critical stable height or profile (dependent on eruptive style and local geo-tectonic conditions). Once the edifice becomes metastable, regional tectonic earthquakes or shallow-level intrusion events are likely triggers for collapse. Although the resulting debris avalanches represent the greatest individual hazard from such andesite stratovolcanoes, their frequency is relatively low compared with other types of mass-flows generated during edifice-growth phases. Accurate forecasts of future hazard from mass-flow events are therefore dependent on recognition of both the frequency of a stratovolcano's growth cycle and its current position in that cycle.  相似文献   

11.
泥石流岩土防治工程被广泛应用于泥石流灾害的治理,而工程的损毁程度会对工程的功能性产生一定的影响,并影响效益的持续发挥。文章以汶川为研究区域,选取18条泥石流沟的岩土防治工程作为研究对象,结合现场考察,对防治工程的损毁程度进行评价。评价指标体系总体上分为拦挡工程因子和排导工程因子2项,细化二级评价指标包括坝基损毁度、坝肩损毁度、坝体损毁度、基础冲刷度、结构冲击度、斜坡推力度等6项。运用模糊综合评价方法构建判断矩阵和隶属度函数,将损毁度等级划分为优、良、中、差四个等级。评价结果显示,除板子沟和登溪沟的防治工程损毁等级为差和中以外,其余泥石流沟内防治工程损毁等级均为良或优,且评价结果与现场考察一致。  相似文献   

12.
This article explores whether past exposure to debris flow disasters with a human dimension (e.g. caused in part by deforestation) results in adaptive hazard mitigation and improved environmental and resource management practices in affected areas. When guiding hazard mitigation practice, the ‘adaptive hazard mitigation’ approach views mitigation as a multi-dimensional experiment, with the associated need for post-experiment monitoring, evaluation, learning and adjustment, and attention paid to multiple scales (Bogardi 2004). This article explores how the concept of ‘adaptive hazard mitigation’ has emerged, linking this ‘adaptive management’ used increasingly in resource and environmental management. Two case studies of disasters linked to human-induced environmental change are examined, and the mitigation responses of local communities, NGOs and Government agencies are documented. Data sources include secondary data (journal articles, web-based disaster reports and grey literature) on each disaster, key informant interviews (n = 8) and direct observation over the 2005–2006 period of post-disaster mitigation actions implemented after each disaster. The research indicates that in both case studies, a limited range of hazard mitigation actions was employed, including both structural and non-structural approaches. However, the research also found that causal factors involving human-induced environmental change (e.g. deforestation) were not addressed, and overall, the hazard mitigation strategies adopted lacked monitoring, learning and adjustment. In both case studies, responses to disaster were judged to be examples of ‘trial and error’ adaptation, rather than either ‘passive’ or ‘active’ adaptation.
Brent DobersteinEmail:
  相似文献   

13.
选取四川省汶川至马尔康公路线的磨子沟作为试验对象,采用弯道超高法推算其泥石流流速。进而可以计算出该次泥石流的平均流量,为公路的改建工程提供设计依据。经过实地调查,用此方法计算磨子沟2005年8月17日暴发的泥石流流速为4.4m/s。同其他流速方法计算的结果相比较,前者值偏大,且偏向于工程安全值。弯道超高法可以解决泥石流观测的局限性和泥石流发生的不可重复性。此方法简便易行,对泥石流防治工程具有一定的实用价值。  相似文献   

14.
泥石流空间易发程度调查是开展地质灾害防范和制定生态修复计划的基础之一。目前单纯依靠野外调查并结合遥感观测,或以小流域为单元的泥石流模拟,均难以在大空间范围内高效、准确地识别潜在泥石流沟。鉴于泥石流是一种高能重力流,此次研究以金沙江流域为例,在假定物源供给无差异条件下,提出通过求算河流功率梯度(ω)来实现地表外动力活动强度定量刻画和泥石流空间易发程度调查的新方案,并将泥石流沟验证点数与ω值关系曲线的比降趋势突变位置作为阈值(1×10?4 W/m2),提取出大约3.2万条长度超过200 m的高能河谷或泥石流易发沟谷。这些沟谷基本位于金沙江和雅砻江干流中下游,在大约30 km距离的缓冲区范围内密集分布,其数量与缓冲区宽度存在乘幂函数关系。在全球变暖背景下,未来发生极端气象事件可能性趋于增加,这些地带,尤其是梯级库区河段应做为泥石流灾害的重点防范区。研究的最终结果提供了金沙江流域泥石流易发沟谷的空间位置及ω值的点阵数据集,可供检索高能河谷的准确位置,也可作为相关地质灾害与地表过程研究的基础数据和资料。   相似文献   

15.
陈华清  杨敏  张江华  何芳  乔冈  刘瑞平 《地质通报》2015,34(11):2009-2017
考虑到近年来国家对小秦岭金矿区矿山泥石流防治工程投入、山区居民抗灾意识逐步增强等实际情况,从承灾体抗灾能力对风险的减弱作用出发,尝试提出了矿渣型泥石流抗灾能力评价指标及评价方法,并将其运用到泥石流风险评价模型中。抗灾能力评价结果表明,研究区所有支沟的泥石流抗灾指数普遍不高,抵御泥石流风险的能力不强。风险评价结果显示,18条支沟中仅有东桐峪的北沟泥石流风险性高,其余均为中等风险级别。这一结果低于传统泥石流风险评价模型的评价结果,是区域内泥石流沟谷中承灾体主动或被动抵抗泥石流危害能力的体现。  相似文献   

16.
为提高泥石流重力式拦挡坝的设计安全和避免资金投入过大而造成浪费,选择合理的泥石流冲击力作为设计依据尤为重要。文章结合舟曲县三眼峪沟灾后重建防治工程相关数据,利用有限元软件ABAQUS进行计算分析,采用增量加载的数值计算方法,分别求得2种工况下重力式拦挡坝的抗冲击力。根据三眼峪沟治理工程运行至今的反馈情况,证明在泥石流治理工程设计中,冲击力选择工况1和2的平均值较合理,同时说明该方法与经验公式结合使用,其结果更加精确可靠,在泥石流工程设计和研究中具有良好的应用前景。  相似文献   

17.
陶伟  胡晓波  姜元俊  肖琨  唐俊杰 《地质通报》2023,42(9):1610-1619
滑坡碎屑流的能量演化机制涉及复杂的碰撞、摩擦和能量转化,对滑坡灾害的防治具有重要意义。以四川省三溪村滑坡为例,采用离散元法建模,研究了不同土颗粒粒径下滑坡的运动堆积特征、能量演化过程及其对建筑物的影响。结果表明,在不同粒径条件下,滑坡的堆积特征变化不大,但它们对能量转换和建筑物的冲击力有显著的影响。粒径越大,滑坡启动速度越快,峰值动能速度越高,碰撞耗散能量越大,摩擦耗散能量越少。粗粒土中颗粒间距越大,颗粒间的碰撞效应越明显,有利于能量传递,因此,对房屋的冲击力越大。因此,在模拟过程中不能忽视颗粒粒径对滑坡碎屑流动力学特征的影响。这些研究结果揭示了不同粒径土粒在滑坡运动过程中的能量演化机制,为能量演化对建筑冲击的影响提供了初步的认识,可为滑坡碎屑流的防治提供指导依据。  相似文献   

18.
云南省德钦县曾多次暴发较大规模的泥石流,是云南遭受地质灾害最严重的地区之一。根据直溪河泥石流的分区、物源、流体和堆积等特征,首先确定了直溪河泥石流的5种成灾模式:崩塌-碎屑流、岩质滑坡-碎屑流、土石混合体滑坡-碎屑流、松散堆积层-基岩接触面滑坡-碎屑流和松散堆积层内滑坡-碎屑流;其次,采用FLO-2D模型对直溪河在10年、20年、50年和100年一遇暴雨周期下发生泥石流时的运动情况进行模拟,定量分析了不同降雨重现期的最大流速、最大堆积深度、冲出沟口堆积距离和体积规模。结果表明:该泥石流暴发时具有启动加速度大、流速快、破坏力强、流通区长的特点;当100年一遇的泥石流发生时,其最大流速达到了3.07 m/s;最大泥深为2.27 m;泥石流冲出方量为84419 m3;致灾面积达到91600 m2。研究结果可为直溪河泥石流灾害防治与治理提供数据参考,为德钦县防灾减灾工程设计提供依据。  相似文献   

19.
This paper examines the long-term field performance of the check-dams in mitigation of soil erosion in the Duozhao catchment of Jiangjia stream, southwest China. Since their construction between 1979 and 1982, the check-dams have been functioning effectively. The examination is made via comparisons between the environmental conditions of the Duozhao catchment with its adjacent Menqian catchment in the stream, because no check dams were constructed in the Menqian catchment. The examination is based on recent field investigations and aerial photograph analyses, and covers four aspects: (a) bed gradients of catchment channels; (b) stability of bank slopes; (c) rates of land erosion; and (d) vegetations on bank slopes. The field data demonstrate that the check-dams have had the following good functions for mitigation of soil erosion: (1) restricting the channel depth and lateral erosions, (2) protecting the channel erosion base, (3) reducing the bed gradients of debris-flow channels, (4) fixing the channel bed, (5) stabilizing the bank slopes, as well as (6) facilitating the growth of vegetations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Due to the plate movement is considerably slow, the human history record is too short to register landscape change for such a long time scale. However, longitudinal river profile can display watershed landscape characteristics. Therefore, this paper applies a quantitative analysis of geomorphic indices coupled with some mathematical models for the Choushui River and its six tributaries, including the gradient index and slope–area relationship. The abnormally high SL and SL/k values indicated that a decreasing trend from lower- to mid-stream areas and south Lishan fault was higher than north Lishan fault on the upstream areas, and the result of slope–area relationship also indicated that the regression line of the upper and lower steam exhibit an obvious right-shift nearby Lishan fault, could be explained by geodynamic models of active deformation in Taiwan area. This study also found that the abnormally high values of SL/k were affected by river and fault intersecting to form a high angle or perpendicular and the abnormally low values of SL/k were affected by river along with a fault or form a low angle, but the channel of Junda River along with Lishan fault is opposite. Based on quantitative results of these geomorphology indices, this study suggests that the important factor influencing landscape of the Choushui River watershed is tectonic uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号