首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We study the influence of X-rays on the wind structure of selected O stars. For this purpose we use our non-local thermodynamic equilibrium (NLTE) wind code with inclusion of additional artificial source of X-rays, assumed to originate in the wind shocks.
We show that the influence of shock X-ray emission on wind mass-loss rate is relatively small. Wind terminal velocity may be slightly influenced by the presence of strong X-ray sources, especially for stars cooler than   T eff≲ 35 000 K  .
We discuss the origin of the   L X/ L ∼ 10−7  relation. For stars with thick wind this relation can be explained assuming that the cooling time depends on wind density. Stars with optically thin winds exhibiting the 'weak wind problem' display enhanced X-ray emission which may be connected with large shock cooling length. We propose that this effect can explain the 'weak wind problem'.
Inclusion of X-rays leads to a better agreement of the model ionization structure with observations. However, we do not find any significant influence of X-rays on P  v ionization fraction implying that the presence of X-rays cannot explain the P  v problem.
We study the implications of modified ionization equilibrium due to shock emission on the line transfer in the X-ray region. We conclude that the X-ray line profiles of helium-like ions may be affected by the line absorption within the cool wind.  相似文献   

2.
We report the serendipitous discovery of a flare star observed with the ROSAT X-ray observatory. From optical spectra, which show strong and variable emission lines of the hydrogen Balmer series and neutral helium, we classify this object as a M3.0Ve star, and estimate a distance of 52 pc from published photometry. Owing to the close proximity of the star (13.6 arcmin) to the calibration source and RS CVn binary AR Lacertae, long-term X-ray coverage is available in the ROSAT archive (∼50 h spanning 6.5 yr). Two large flare events occurred early in the mission (1990 June–July), and the end of a third flare was detected in 1996 June. One flare, observed with the Position Sensitive Proportional Counter (PSPC), had a peak luminosity L X=1.1×1030 erg s−1, an e-folding rise time of 2.2 h and a decay time of 7 h. This decay time is one of the longest detected on a dMe star, providing evidence for the possibility of additional heating during the decay phase. A large High Resolution Imager (HRI) flare (peak L X=2.9×1030 erg s−1) is also studied. The 'background' X-ray emission is also variable – evidence for low-level flaring or microflaring. We find that 59 per cent of the HRI counts and 68 per cent of the PSPC counts are caused by flares. At least 41 per cent of the HRI exposure time and 47 per cent of the PSPC are affected by detectable flare enhancement.  相似文献   

3.
Simultaneous X-ray and extreme ultraviolet (EUV) ( ROSAT XRT and WFC All-Sky Survey) observations of the highly active dMe flare stars YY Gem and AU Mic show that the two stars displayed an unusual type of flaring behaviour. We detect several X-ray and EUV flares superimposed on an enhanced and smoothly varying quiescent background. The two large impulsive-type X-ray flares on YY Gem reach peak X-ray luminosities of     and we estimate that they had similar integrated luminosities (∼6–8×1033 erg). AU Mic also produced several X-ray and EUV flares, with one very impulsive flare producing a 10-fold increase in XRT count rate. This flare was even larger than the YY Gem flares (peak L X of     and integrated L X of    
The     ratio for both stars is at the 'saturation' limit found in rapidly rotating dwarfs and the most active RS CVn stars. We suggest that the gradually varying components are the result of a period of continuous, unresolved flaring activity. Alternatively, they may be the result of the emergence and subsequent decay of a new magnetic active region on the stellar surface of these stars.  相似文献   

4.
We have derived the X-ray luminosities of a sample of galaxies in groups, making careful allowance for contaminating intragroup emission. The L X: L B and L X: L FIR relations of spiral galaxies in groups appear to be indistinguishable from those in other environments, however the elliptical galaxies fall into two distinct classes. The first class is central-dominant group galaxies, which are very X-ray luminous and may be the focus of group cooling flows. All other early-type galaxies in groups belong to the second class, which populates an almost constant band of L X/ L B over the range 9.8< log  L B<11.3 . The X-ray emission from these galaxies can be explained by a superposition of discrete galactic X-ray sources together with a contribution from hot gas lost by stars, which varies a great deal from galaxy to galaxy. In the region where the optical luminosity of the non-central group galaxies overlaps with the dominant galaxies, the dominant galaxies are over an order of magnitude more luminous in X-rays.
We also compared these group galaxies with a sample of isolated early-type galaxies, and used previously published work to derive L X: L B relations as a function of environment. The non-dominant group galaxies have mean L X/ L B ratios very similar to those of isolated galaxies, and we see no significant correlation between L X/ L B and environment. We suggest that previous findings of a steep L X: L B relation for early-type galaxies result largely from the inclusion of group-dominant galaxies in samples.  相似文献   

5.
We present results of an ≈20-ks X-ray observation of the Wolf–Rayet (WR) binary system WR 147 obtained with XMM–Newton . Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from infrared studies and reveal hot plasma including the first detection of the Fe Kα line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature   kT shock= 2.7  keV (   T shock≈ 31  MK), close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.  相似文献   

6.
We describe some of the first X-ray detections of groups of galaxies at high redshifts  ( z ∼0.4)  , based on the UK deep X-ray survey of McHardy et al. Combined with other deep ROSAT X-ray surveys with nearly complete optical identifications, we investigate the X-ray evolution of these systems. We find no evidence for evolution of the X-ray luminosity function up to   z =0.5  at the low luminosities of groups of galaxies and poor clusters  ( L X≳1042.5 erg s-1)  , although the small sample size precludes very accurate measurements. This result confirms and extends to lower luminosities current results based on surveys at brighter X-ray fluxes. The evolution of the X-ray luminosity function of these low-luminosity systems is more sensitive to the thermal history of the intragroup medium (IGM) than to cosmological parameters. Energy injection into the IGM (from, for example, supernovae or active galactic nuclei winds) is required to explain the X-ray properties of nearby groups. The observed lack of evolution suggests that the energy injection occurred at redshifts   z >0.5  .  相似文献   

7.
We use ROSAT HRI spatial data and ASCA spectral measurements for a sample of seven nearby, early-type spiral galaxies, to address the question of whether a low-luminosity active galactic nucleus (LLAGN) is present in galaxies that have a LINER 2 classification. The brightest discrete X-ray source in the ROSAT HRI observations is invariably found to be positionally coincident with the optical galactic nucleus, and in most cases its flux dominates the X-ray emission from the central region of the galaxy. All seven galaxies have X-ray spectra consistent with a two-component, soft thermal plus hard power-law, spectral form. If we exclude the two galaxies with relatively hard X-ray spectra, NGC 3628 and NGC 4594, for which there is supporting evidence for a LLAGN (or alternatively in the case of NGC 3628 a dominant ultraluminous X-ray binary), then the remaining galaxies show surprisingly similar X-ray spectral properties. Specifically the flux ratio F X(0.5–1)/ F X(2–5) , which measures the relative strengths of the thermal and non-thermal emission components, shows little scatter about a mean of 0.66, a value very similar to that measured in the classic starburst galaxy NGC 253. As there is no obvious reason why the luminosity of the hard power-law continuum emanating from a putative LLAGN should be very closely correlated with the thermal emission of the surrounding region, this suggests that that the broad-band (0.5–5 keV) X-ray emission from these LINER 2 galaxies may originate in a common set of processes probably associated with the starburst phenomenon. Conversely, it appears that in many LINER 2 galaxies and perhaps the majority, the nuclear X-ray luminosity does not derive directly from the presence of a LLAGN.  相似文献   

8.
Optical spectroscopy of CPD −59° 2635, one of the O-type stars in the open cluster Trumpler 16 in the Carina Nebula, reveals this star to be a double-lined binary system. We have obtained the first radial velocity orbit for this system, consisting of a circular solution with a period of 2.2999 d and semi-amplitudes of 208 and 273 km s−1. This results in minimum masses of 15 and 11 M for the binary components of CPD −59° 2635, which we classified as O8V and O9.5V, although spectral type variations of the order of 1 subclass, which we identify as the Struve–Sahade effect , seem to be present in both components. From ROSAT HRI observations of CPD −59° 2635 we determine a luminosity ratio log( L x/ L bol)≈−7 , which is similar to that observed for other O-type stars in the Carina Nebula region. No evidence of light variations is present in the available optical or X-ray data sets.  相似文献   

9.
The X-ray observations of the ROSAT -PSPC All-Sky Survey have revealed bright and energetic coronae for a number of late-type main-sequence stars, many of them flare stars. We have detected 31 X-ray flares on 14 stars. A search for simultaneous X-ray and EUV (extreme ultraviolet) flares using ROSAT Wide Field Camera survey data revealed a large number of simultaneous flares. These results indicate that the heating mechanisms of the X-ray and EUV‐emitting regions of the stellar coronae are similar. We find X-ray quiescent variability for nine of the 14 stars and simultaneous X-ray and EUV quiescent variability for seven of these nine stars. These results imply that the stellar coronae are in a continuous state of low-level activity. There are tight linear correlations of X-ray flare luminosity with the 'quiescent' X-ray as well as with the stellar bolometric luminosity. The similarity between the X-ray-to‐EUV quiescent and flare luminosity ratios suggests that the two underlying spectra are also similar. Both are indeed consistent with the previously determined Einstein two-temperature models. We suggest that both the variability and spectral results could indicate that the quiescent emission is composed of a multitude of unresolved flares.  相似文献   

10.
We examine the effects of cooling flows on the T X– L Bol relation for a sample of the most X-ray luminous ( L Bol > 1045 erg s−1) clusters of galaxies known. Using high-quality ASCA X-ray spectra and ROSAT images we explicitly account for the effects of cooling flows on the X-ray properties of the clusters and show that this reduces the previously noted dispersion in the T X– L Bol relationship. More importantly, the slope of the relationship is flattened from L Bol ∝  T 3X to approximately L Bol ∝  T 2X, in agreement with recent theoretical models which include the effects of shocks and pre-heating on the X-ray gas. We find no evidence for evolution in the T X– L Bol relation within z  ∼ 0.3. Our results demonstrate that the effects of cooling flows must be accounted for before cosmological parameters can be determined from X-ray observations of clusters. The results presented here should provide a reliable basis for modelling the T X– L Bol relation at high X-ray luminosities.  相似文献   

11.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

12.
A spectroscopic study of the binary Wolf–Rayet (WR)+O system WR 145 is performed, in order to determine the radial velocity orbits of the individual stars, the angle of orbital inclination and the stellar masses. The emission and absorption components are separated from the original spectra, allowing us to confirm the spectral classification WN 7o/CE of the hybrid WR component and to derive a spectral classification O7V((f)) for the O star. A study of the wind-collision properties is performed. Fitting the radial velocity and full width at half-maximum of the excess emission with Lührs' model results in an inclination angle of   i = 63°  , leading to estimates of the stellar masses:   M WR= 18 M  and   M O= 31 M  . Both of these masses are compatible with those of other stars of similar types.  相似文献   

13.
We calculate the X-ray emission from both constant and time-evolving shocked fast winds blown by the central stars of planetary nebulae (PNe) and compare our calculations with observations. Using spherically symmetric numerical simulations with radiative cooling, we calculate the flow structure and the X-ray temperature and luminosity of the hot bubble formed by the shocked fast wind. We find that a constant fast wind gives results that are very close to those obtained from the self-similar solution. We show that in order for a fast shocked wind to explain the observed X-ray properties of PNe, rapid evolution of the wind is essential. More specifically, the mass-loss rate of the fast wind should be high early on when the speed is  ∼300–700 km s−1  , and then it needs to drop drastically by the time the PN age reaches ∼1000 yr. This implies that the central star has a very short pre-PN (post-asymptotic giant branch) phase.  相似文献   

14.
We have used the ROSAT PSPC to study the properties of a sample of 24 X-ray-bright galaxy groups, representing the largest sample examined in detail to date. Hot plasma models are fitted to the spectral data to derive temperatures, and modified King models are used to characterize the surface brightness profiles.
In agreement with previous work, we find evidence for the presence of two components in the surface brightness profiles. The extended component is generally found to be much flatter than that observed in galaxy clusters, and there is evidence that the profiles follow a trend with system mass. We derive relationships between X-ray luminosity, temperature and optical velocity dispersion. The relation between X-ray luminosity and temperature is found to be L X∝ T 4.9, which is significantly steeper than the same relation in galaxy clusters. These results are in good agreement with pre-heating models, in which galaxy winds raise the internal energy of the gas, inhibiting its collapse into the shallow potential wells of poor systems.  相似文献   

15.
We have performed high-speed UBV photometric observations on the peculiar binary V Sagittae. Using three new eclipse timings we update the orbital ephemeris and convert it to a dynamical time-scale (TDB). We also searched for quasi-periodic oscillations but did not detect them. Using the Wilson–Devinney algorithm we have modelled the light curve to find the stellar parameters of V Sge. We find that the system is a detached binary but that the primary star is very close to filling its Roche lobe, while the secondary star fills 90 per cent of its Roche lobe volume. We find temperatures of the primary and the secondary star to be T 1=41 000 K and T 2=22 000 K. We find i =72° and masses of 0.8 M and 3.3 M for the primary and secondary stars respectively. De-archived Hubble Space Telescope ( HST ) spectroscopy of V Sge shows evidence of mass loss via a wind or winds. In addition we report radio observations of V Sge during an optical high state at 2 cm, 3.6 cm and 6 cm wavelengths. The 3.6 cm emission is increased by a factor of more than six compared with an earlier detection in a previous optical high state.  相似文献   

16.
A new method of determining absolute visual magnitudes of early-type stars, based on averaging Hipparcos parallaxes ( ESA 1997 ) inside samples of the same spectrum and luminosity (Sp/L) classes, is proposed. The used sample consists of 6262 unreddened and reddened OB stars as well as 430 Be stars of luminosity classes Ia, Iab, Ib, II, III, IV and V. The colour excesses of the reddened stars have been calculated using the mean colour indices, according to the SIMBAD data base and the intrinsic ( B − V ) values calibrated for given Sp/L classes by Papaj, Wegner & Krełowski . The values of the total-to-selective extinction   RV = AV / E ( B − V )  for all reddened stars were calculated from the published near-infrared photometric measurements. The calculated visual magnitudes MV of OB and Be stars are compared to those published by Wegner in Paper I, and the earlier determinations of Schmidt-Kaler. Generally, the new values of MV agree well with those given in Paper I, except those for O stars which are systematically brighter than the earlier estimates. The mean absolute magnitudes published by Schmidt-Kaler are generally brighter (except OB stars of luminosity class V) than those determined in this paper.  相似文献   

17.
In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 μJy and a detection of it in the X-rays with a luminosity of about  3 × 1031  erg s−1, a value much lower than what had been observed in some of the low angular resolution surveys of the past. These data are in good agreement with the idea that the X-ray emission from V Puppis comes from mass transfer between the two B stars in the system, but can still accommodate the idea that the X-ray emission comes from the black hole accreting stellar wind from one or both of the B stars.  相似文献   

18.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

19.
A number of strong infrared forbidden lines have been observed in several evolved Wolf–Rayet (WR) star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to WR star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.  相似文献   

20.
Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is modulated at the stellar rotation period. To interpret these measurements, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We present nearly analytic models of the thermal structure of the envelopes of ultramagnetized neutron stars. Specifically, we examine the limit in which only the ground Landau level is filled. We use the models to estimate the amplitude of modulation expected from non-uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we estimate cooling rates for stars with fields B  ∼ 1015 − 1016 G, which are relevant to models that invoke 'magnetars' to account for soft γ-ray emission from some repeating sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号