首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Placer gold grains in the Nilambur Valley of Wynad Gold Field in southern India are characterized by very high purity levels (985–1000). Their Ag-depleted core compositions, enhanced grain size and microscale growth patterns correlate with gold grains associated with laterite profiles in the weathering fronts. From the morphological and chemical evolution of gold grains associated with primary, supergene and secondary deposits in this region, we identified a two-stage process for the evolution of the highly pure placers, which shows that gold in the primary veins was mobilized, chemically purified, and reconcentrated in the laterite profiles, effecting enhanced purity and grain growth before transfer to the fluvial system. Further refinement was achieved during fluvial transport, generating natural concentrations of pure gold in the placers.  相似文献   

2.
Separated gold grains from 94 samples of the Vaal Placer, Klerksdorp gold field, South Africa have been analyzed for Au, Ag and Hg. Average gold grain compositions in these samples range from 80 to 95 weight percent Au, 4 to 18 weight percent Ag and 0.5 to 4 weight percent Hg with an average composition around Au 90, Au 8, Hg 2. Individual grains are homogeneous but significant differences exist between gold grains from single small samples and also between average compositions in separate samples. The data do not fit any simple model of gold compositional control by provenance or by metamorphic homogenization.  相似文献   

3.
The distribution of gold in the weathering blanket at the Belikombone gold prospect in east Cameroon provides insights into gold mobility in the secondary environment and in tropical terrains worldwide. Both gridline-controlled sampling of topsoil (surface samples) and sampling of various layers in pits are used and the gold assay for each sample determined by NiS fire assay with ICP-AES finish. One hundred and thirty-two (132) surface samples and a total of 206 samples from 19 exploration pits were analyzed. The results from the topsoil samples show an anomaly with the highest Au concentration at 5.9 mgkg−1. The mineralization corridor follows a NE-SW trend. The horizons within the pits range from sap rock at the base, through saprolite, rubble layer rich in relict quartz material to a ferruginous loose layer at the top although some horizons are missing in some pits. All the layers contain gold and the highest concentration in the sap rock horizon is 3.4 mgkg−1 while the rubble layer has a gold high of 6.1 mgkg−1. The individual soil horizons show no systematic gold trends and given the presence of gold in all layers, the patterns point towards supergene dissolution and redistribution of gold. Gold enrichment within the upper horizons in the weathering blanket is attributed to sequestration by Fe oxides of chemically remobilized gold. However, the high gold content within the sap rock and saprolite layers suggests that migration of gold in the particulate form supersedes chemical gold redistribution. Particulate gold obtained by panning samples from the pits varies in shape from euhedral, elongated to irregular. Electron microprobe analysis on the grains record high contents of gold in the rim zones (90.0 to 99.8 wt%). The cores are relatively rich in Ag (12.6 to 14.2 wt%) while the rims are poor in Ag. The low Ag content in the rims is attributed to the preferential leaching of Ag. The soil pH value in this area varies between 3.6 and 7.3. Under such acidic to near neutral conditions, bisulfide and thiosulfate ions can dissolve and transport Au and Ag to be precipitated under surficial conditions creating authigenic Au haloes especially in the saprolite and sap rock layers. Such pH values together with oxidizing Eh conditions explain the solubility of gold in the area. These results are important for geochemical exploration of gold in tropical terrains, and confirm previous studies.  相似文献   

4.
The Kottathara gold prospect of Attappadi Valley in Kerala is located within the Southern Indian Granulite Terrain comprising charnockite and gneisses with enclaves of high-grade supracrustals. The gold mineralization associated with the basic members of the Attappadi supracrustals and the quartz veins traversing them are confined within the Bhavani Shear Zone. Primarily the gold-quartz lode is emplaced in rheologically preferred zones along the contact of the basic members with the enclosing gneisses subsequent to a period of retrogression and shearing. Ore-mineralogical studies reveal that gold got remobilized and this remobilization is identified with the regional Bhavani Shear. SEM studies indicate that gold occurs in free state and also within sulphides especially pyrite. Variation in grain morphology is clearly discernible in gold occurring within oxidised and in non-oxidised zones.Sequencing of deformational events with associated emplacements of known ages suggests the age of gold mineralization of Attappadi area as between 2 Ga. and 2.5 Ga. The secondary mobilization has to be <2.0 Ga or younger possibly of younger Pan-African age related with the Moyar-Bhavani Shear System. The inherent gold content of the komatiitic metapyroxenites together with the auriferous quartz lodes assigns a lithological control on gold mineralisation. Subsequent folding and remobilization due to the regional shear constrained the geometry of the lode zones implying structural control.  相似文献   

5.
The supergene Au in weathering crusts of both the Suzdal and Raygorodok deposits is characterized by enhanced fineness, grain size, crystallinity, and the appearance of botryoidal aggregates of crystals. In the weathering crust of the Suzdal deposit, the exogenous Au is associated primarily with scorodite and carbonates; for Raygorodok, with chalcocite, bornite, hydrocarbonates and Cu hydrosulfates. The difference in the mineral associations of supergene Au at the deposits is determined by the occurrence of various mineral concentrators of Au in the primary endogenous substrate: arsenopyrite and pyrite at the Suzdal deposit and chalcopyrite with pyrite at the Raygorodok deposit. Due to the much greater mobility of Ag in the supergene zone, the weathering crusts are likely to contain submicron microinclusions of Ag minerals beyond the zones of Au concentration.  相似文献   

6.
红土型金矿的成矿机理与成矿模式   总被引:2,自引:3,他引:2  
王燕  谭凯旋等 《地质与勘探》2002,38(4):12-16,32
对红土型金矿的地质特征,主要控矿因素,金的溶解迁移与沉淀富集机理进行了分析。红土型金矿风化壳剖面具有分带性,金矿体主要呈层状,似层状产于铁(硅铝)质硬壳层,杂色粘土层中。金以自然金为主,主要呈显微,次显微状被褐铁矿,蒙脱石,高岭石及伊利石等矿物所吸附,金的成色较高。红土型金矿的形成受干,湿交替的热带,亚热带气候控制,并与基底构造(特别是断裂构造0密切相关。金主要以AuCl4^-,Au(S2O3)2^3-等络合的溶解和迁移,还原作用是金沉淀富集的重要因素。建立了红土型金矿的综合成矿模式。  相似文献   

7.
《Applied Geochemistry》2000,15(2):245-263
Since the 80's, studies have shown that Au is mobile in supergene lateritic surficial conditions. They are based either on petrological, thermodynamic studies, or experimental works. In contrast, few studies have been done on the mobility of the Pt group elements (PGE). Moreover, at the present time, no study has addressed the differential mobility of Au, Ag and Pd from natural alloys in the supergene environment. The aim of this study is to understand the supergene behavior, in lateritic conditions, of Au–Ag–Pd alloys of the Au ore locally called Jacutinga at the Maquiné Mine, Iron Quadrangle, Minas Gerais state, Brazil.The field work shows that the host rock is a “Lake Superior type” banded iron formation (BIF) and that the Au mineralization originates from sulfide-barren hydrothermal processes. Primary Ag–Pd-bearing Au has developed as xenomorphous particles between hematite and quartz grains. The petrological study indicates that the most weathered primary Au particles with rounded shapes and pitted surfaces were found, under the duricrust, within the upper friable saprolite. This layer, however is not the most weathered part of the lateritic mantle, but it is where the quartz dissolution resulting porosity is the most developed. The distribution of Au contents in the weathered rocks are controlled by the initial hydrothermal primary pattern. No physical dispersion has been found. Most of the particles are residual and very weakly weathered. This characterizes early stages of Au particle weathering in agreement with the relatively low weathering gradient of the host itabiritic formations that leads essentially to the development of isostructural saprolite lateritic mantle. Limited dissolution of primary Au particles issued from the friable saprolite induces Pd–Ag depleted rims compared to primary Au particle Pd–Ag contents.In addition, limited very short distance in situ dissolution/reprecipitation processes have been found at depth within the primary mineralization, as illustrated by tiny supergene, almost pure, Au particles. The supergene mobility order Pd>Ag>Au as reflecting early weathering stages of Au–Ag–Pd alloys under lateritic conditions is proposed.  相似文献   

8.
A comparative analysis of morphology and geochemistry was made for gold from the primary ores and weathering crust of the Suzdal' gold deposit, Eastern Kazakhstan. The deposit is localized in Carboniferous carbonaceous-terrigenous strata and is of gold-sulfide type. Study of gold from primary ores showed that it occurs mainly in two species: free and so-called invisible. Free gold is crystallomorphic segregations and irregular-shaped grains up to tens of microns in size; it occurs in intergrowths with sulfides, quartz, carbonate, and mica-chlorite aggregate. Most of gold particles have a fineness of 930–980‰, with some grains showing wide variations in composition. Invisible gold (probably chemically combined) is present in fine-acicular arsenopyrite and, less frequently, pyrite.Being transported to the weathering crust, all this gold served as a source for “neogenic” gold of diverse morphologic forms. We recognized crystalline (isometric, prismatic, acicular, and tabular) particles and drusoid gold aggregates in the form of exotic intergrowths of crystallomorphic and sinter-shelly grains. The grains tend to coarsen from bottom to top of the weathering crust. Several generations of gold of different granulometric classes are observed. We have revealed seed and layer growth and dissolution structures in crystals of early generations overgrown with fine grains. All these gold varieties are associated with hypergene minerals. Most of this gold is of high fineness (on the average, 995‰). The hypergene gold particles are chemically homogeneous high-grade, without rims.The results of studies suggest that the high-grade hypergene gold formed in the weathering crust as a result of the dissolution of invisible gold of sulfides and its local redistribution and deposition in oxidizing media. This is also evidenced from the tendency of gold to coarsen from bottom to top of the weathering crust. A distinctive feature of secondary gold is well-expressed crystals and their great diversity.  相似文献   

9.
福建尤溪肖板金矿床金的赋存状态及金矿物特征   总被引:6,自引:0,他引:6  
肖板金矿床属受构造控制的中低温岩浆热液矿床,矿化类型为构造蚀变岩型。金多呈独立金矿物形式出现,少许呈分散状;金矿物以自然金为主,平均成色930,有少量银金矿和碲金矿。金矿物以包体金、裂隙金、连生金和粒间金等形式嵌布于黄铁矿、黄铜矿、石英、方铅矿及方解石等主要载金矿物中,且石英、方解石中较金属硫化物中占优势。金矿物形态各异,粒度以中细粒为主。  相似文献   

10.
At São Bartolomeu, central Brazil, chemical weathering of auriferous sulphide-rich quartz veins has produced a gold-bearing gossan. In the gossan, gold is present both as a residual primary mineral and as a neoformed secondary mineral. Primary gold particles contain varying amounts of silver. They are always more or less weathered, presenting rough surfaces pitted by numerous micrometric cavities. Other dissolution features identified in primary particles are indented shapes and jagged rims. Secondary gold occurs as aggregates of minute pseudohexagonal particles strongly depleted in silver. The presence of sulphur-containing complexes formed during the oxidation of the sulphides appears adequate to explain both the dissolution features on primary gold particles and the formation of pure supergene gold.  相似文献   

11.
The porous fine-grained to microcrystalline copper-zinc ore of the Semenov-2 hydrothermal field, a site in the Semenov hydrothermal cluster discovered in 2007 (13°31′N, MAR), is anomalously enriched in Au (22–188 ppm) and Ag (127–1787 ppm). Chalcopyrite, isocubanite, würtzite, and opal are major minerals; sphalerite, marcasite, pyrite, and covellite are auxiliary; and galena, pyrrhotite, native gold, silver telluride, barite, and aragonite are sporadic. Gold containing 0.31 to 23.07 wt % Ag occurs as up to 9-μm-sized subhedral, dendritelike, and elongated grains mostly hosted in opal and less frequently in sphalerite and in pores within isocubanite-chalcopyrite aggregate. An elongated grain (2 × 4 μm in size) of the Ag-Te phase was found in a pore. So far only basalts have been dredged from the Semenov-2 field, but anomalous gold and silver concentrations suggest the influence of ultramafic rocks; the latter were found 1.5 km westward, in the Semenov-1 hydrothermal field. Mineral assemblage and morphology of gold particles indicate its primary origin in contrast to the hydrothermal fields hosted in basalts, where gold is a product of remobilization. Zonal gold grains, found on oceanic floor for the first time, are characterized by low Ag content in the cores and high Ag content in the outer rims, reflecting variation in formation conditions.  相似文献   

12.
红土型金矿床综述(英文)   总被引:1,自引:0,他引:1  
近二十年来 ,热带地区普遍存在的红土型风化作用及其对矿床与矿化带的影响引起了普遍的关注。红土型风化壳的主要矿物成分是以铁铝的氧化物及氢氧化物和粘土矿物为主 ,如针铁矿、赤铁矿、铝土矿、高岭石及石英等 ,与其未风化的母岩相比 ,含有相当高的铁和铝。红土型风化过程中 ,易溶元素均不同程度地被淋滤 ,而难溶元素则相对富集。红土型金矿床就是在这样强烈的风化作用中由原生的金矿化带进一步富集而成 ,并可形成极富的矿体。金矿体常常赋存于风化壳的上部 ,易于露天开采。目前 ,在澳大利亚、巴西、巴布亚新几内亚、印度以及非洲的一些国家均发现了红土型金矿床。红土型风化剖面一般可分为 5个特征带 ,由上而下为 :表土带、铁质带、斑点带、浅色带、腐岩带 ,下面即为未风化的母岩 ,金矿体主要赋存于铁质带和斑点带中。红土型风化壳厚度变化很大 ,薄则几米 ,厚可达数百米。金在风化过程中往往向矿化带两侧运移 ,矿体常呈上宽下窄状。次生金常呈自形晶、树枝晶、浑圆状及不规则状产出 ,并常常与铁质结核共生。一般地说 ,次生金的成色很高 ,因为红土型风化作用常常是在氧化并且酸性的地球化学环境中进行 ,金和银主要以氯化物的形式运移 ,局部地球化学环境的变化可导致金的沉淀 ,而银的氯化物则较稳定 ,?  相似文献   

13.
Here, we report the first documented occurrences of “invisible” gold and silver in seafloor sulfide deposits from an active hydrothermal system on the Central Indian Ridge. A detailed mineralogical and geochemical study of polymetallic sulfides from the Edmond vent field was conducted in order to identify controls on the distribution of precious metals. Bulk samples (N = 18) contain up to 18.7 ppm Au and 1450 ppm Ag, with average concentrations of 2.3 ppm Au and 218.9 ppm Ag. Among them, several Zn-rich chimney fragments and anhydrite-dominated ore samples have higher contents of precious metals than Fe-Cu-rich massive sulfides and silica-rich hydrothermal precipitates. Native gold grains are mainly associated with sphalerite, anhydrite, barite and Fe-oxyhydroxides. Abundant submicroscopic Au-Ag alloys tend to occur along grain boundaries between Cu-Fe sulfides and tennantite, or close to the rims of Fe-poor sphalerite. In contrast to primary electrum with high Ag/Au ratios, the absence of detectable silver in high-purity gold indicates that secondary Au enrichment has probably occurred after a direct co-precipitation with Zn-rich mineral assemblages upon cooling and mixing of vent fluids with cold seawater. A suite of late-stage Ag-rich phases, including argentotennantite, pearceite and acanthite, occur as crack-filling veinlets and patches in low-temperature fahlores, or as tiny inclusions enclosed by pyrite, chalcopyrite and colloform sphalerite. By using HRTEM combined with HAADF-STEM imaging, we have found out that silver is also present in significant quantities as discrete colloidal nanoparticles in tennantite. Minor native copper is closely associated with altered chalcopyrite, sphalerite and covellite, exhibiting signs of dissolution, recrystallization and reprecipitation. Extensive hydrothermal reworking resulted from a long history of high-temperature venting in this field, together with post-depositional supergene replacement processes (involving oxidation, leaching or coupled dissolution-reprecipitation mechanisms facilitated by a permeable porosity generated in primary Cu-Fe sulfides) are considered to be important for the remobilization and local reconcentration of early-formed precious metals, and may have been responsible for the formation of relatively coarse-grained native gold or silver within recrystallized massive sulfides and chimney debris.  相似文献   

14.
包村和朝山金矿床位于安徽铜陵狮子山矿田,属于夕卡型岩金矿床,侵入岩体分别为包村石英闪长岩体和白芒山辉石闪长岩体。通过矿相鉴定和电子探针分析,对矿床中的自然金进行了详细的观察和研究。结果表明,在两个矿床中,金矿物均以独立的自然金颗粒形式产出,且常具有“银边结构”,但在自然金的嵌布方式、载体矿物、形态、大小、金银含量变化和成色等方面表现出显著差别。根据自然金的不同特征,对金矿床的成因进行分类,包村金矿床属于Cu-Au共生,而朝山矿床为Cu-Pb-Zn-Au共生型金矿床。不同矿床不同的金产状主要是由于金的运移、络合物种类、温度、pH和金银络合物活度比值等因素赞成的。此外,包村矿床和朝山矿床在地表均遭受氧化作用形成表生矿床,其表生金成色均明显高于原生金,且成分均一。  相似文献   

15.
为预测和评价那仁陶勒盖金矿的成矿潜力,运用多元统计方法,结合地球化学各参数信息,对那仁陶勒盖金矿原生晕进行系统研究.结果显示:那仁陶勒盖金矿赋矿花岗闪长岩中Au、Ag、Bi等元素浓集克拉克值明显偏高,与那仁陶勒盖金成矿作用关系密切;矿石中Au与Sb、Cu、Pb、Ag、Hg、Zn、As、Bi等关系最为密切;矿体原生晕轴向分带序列出现尾晕元素W、Sn等与前缘晕元素As叠加的现象,同时(As+Sb)/(Bi+Mo)、100Sb/(Bi·Mo)等分带性指数出现转折,指示深部存在盲矿体.依据上述矿体原生晕特征,建立矿体叠加晕预测模型,预测盲矿体赋存位置在海拔710m以下的岩体与地层接触带附近.  相似文献   

16.
Mercuriferous gold and amalgams of two types have been detected in the Lower Triassic, Middle Jurassic, and Holocene alluvial deposits in the sedimentary cover of the Vyatka-Kama depression. Electron microscopic studies revealed that some of these aggregates represent intergrowths of individual segregations (globules) ranging in size from 1 to 300 μm. At high magnifications (up to 100 000 times or more), electron photomicrographs show that the smallest globules include tiny (up to nanoscale) gold particles. Microprobe analysis made it possible to detect significant chemical variations in the globules mainly due to alterations in the Hg content (from 0 to 58.25 wt %). The major part of such aggregates belongs to solid Au-Hg solid solutions. Amalgams with Hg >19.8 at % are represented by several phases: (Au,Ag)3Hg and (Au,Ag)2Hg prevail; (Au,Ag)3Hg2, (Au,Ag)5Hg4, and (Au,Ag)Hg are subordinate. In terms of composition, some globules correspond to argentiferous gold (without Hg), mercuriferous electrum, and Au-Pb intermetallides with Hg, Ag and Cu. Another, more widespread type is represented by lumpy massive grains (with mercuriferous gold shell) and porous amalgam. Their formation is related to natural amalgamation initiated by the Early Mesozoic tectonomagmatic activation of the platform and adjacent deep faults. The results obtained can be used in prospecting for Au-Hg mineralization in the sedimentary cover of the Vyatka-Kama depression.  相似文献   

17.
本文对浙江省绍兴一龙泉隆起带内代表性金矿床的原生及次生地球化学异常特征进行了系统研究,确定了异常中最主要的指示元素以及它们自近矿至远矿、从矿下到矿上的分带序列和组合特征,并总结出在本区及邻区金矿勘查中具有实际意义的综合地球化学找矿标志。  相似文献   

18.
黔东内生金矿自然金成色及其研究   总被引:5,自引:0,他引:5  
余大龙 McQu.  KG 《矿物学报》1997,17(2):175-182
研究区13个金矿床/点,24个自然金样品,161个点的电子探针测试表明,区内自然金成色平均值几乎均大于900%0,属高成色;自形晶比它形晶的金银含量均匀;位于交代前峰的金成色比尾部低,包体金随主矿物的种类不同成色不同。银是金中最主要的杂质元素;铋在该区金中具有很高的富集程度,是影响成色的主要因素。本区与湖南相比,具有地层越老、成色越高、银含量越低的共同规律,而成色高低与成矿时间和温度的关系较前人总结的规律出入甚大;比值关系表明,前者变化范围很小,后者很大,碱金属含量变化对前者影响不大。  相似文献   

19.
魏绍六 《湖南地质》2001,20(3):177-178,210
原生矿床中金的主要性状有自然金与金的碲化物,自然金可分为“明金”和“微细粒金”,“明金”的次生作用,使金的成色得到提高,粒度更大,往往有利于残坡积型砂金矿床的形成,“微细粒金”的次生作用,常形成卡林型氧化金矿或红土型金矿和铁帽型金矿,显然,以“明金”为主的矿床及金的重砂异常区,不存在找红土型金矿的可能,应寻找脉金矿床,而在有低值金的重砂异常叠加的化探Au异常区,有望找到中小型红土型金矿床。  相似文献   

20.
《Geodinamica Acta》1998,11(5):205-215
We compared the disintegration processes and mineralogic and chemical evolution pathways of two Quaternary basalts at Bakrit and Ifrane, weathered in the same physiographic and hydrologic conditions, but differing in texture according to the quantity of glass present. At Bakrit, quite abundant glass favoured the formation of a microfissure network throughout the rock and its disintegration without any distinct weathering front. As a result, basaltic sand with polymineral grains and a clayey-silty matrix were produced. At Ifrane, weathering of a glass-poor basalt produced only a clayey-silty saprolite. In glass-rich basalts, secondary minerals formed in microfissures and were 2/1 clay-mineral rich. In glass-poor basalts, secondary minerals formed mainly within primary minerals and were 1/1 clay-mineral rich. Because glass could be easily dissolved, it protected the minerals of close chemical composition, especially the plagioclases. The order of basalt-mineral weathering (olivine, labrador, augite, Fe-Ti oxides) was modified when glass was abundant (glass, olivine, augite, labrador, Fe-Ti oxides).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号