首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   

2.
3.
综合考虑了地震活动时空强3 个方面的震兆特征,定义了地震活动因子 A值.使用1972 ~1996 年华北地区地震资料进行空间扫描,研究中强以上地震前 A 值的中短期异常变化特征.结果表明,在中短期阶段大多数地震前出现的 A 值中期异常区面积明显缩小或消失,也有一些地震前1 ~3 个月 A 值异常区面积再次增大.还就用 A 值进行地震中短期预报的有关问题进行了讨论  相似文献   

4.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

5.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

6.
前兆地震活动图象及其在地震预报中的作用   总被引:12,自引:0,他引:12  
刘蒲雄 《中国地震》1993,9(2):112-120
本文根据长、中和短期预报研究对主要地震活动图象加以归类和简述。结果表明:(1)利用地震活动图象进行中、短期预报,预报时间量程可能达到1、2年,甚至几个月,但要进一步缩短预报的时间尺度就十分困难,除非有明显的前震序列活动;(2)地震活动图象分析,对于辨认未来主震(尤其是强主震)的位置是有效的;(3)强震和中强震前的图象特点是有区别的,据此,可以大概估计未来主震的震级。不过图象的空间尺度与主震震级无明显的相关性;(4)信号震、前兆震群和前震(包括早期前震)的确定应考虑到异常的地震活动时空图象。  相似文献   

7.
The Kanto earthquake (M=7.9) that occurred along the Sagami Trough in the Sagami Bay on 1 September 1923 was one of the most disastrous earthquakes in Japanese history. The Kanto area includes Metropolitan Tokyo and Yokohama which are densely populated, and hence it has been a matter of great concern, from the viewpoints of earthquake prediction and disaster prevention, whether or not the 1923 Kanto earthquake was preceded by precursory seismicity. A study using the most complete lists of earthquakes catalogued recently by Utsu and the Japan Meteorological Agency reveals that seismic activity in the Kanto area was appreciably higher before and after the Kanto earthquake, and that the Kanto earthquake was preceded by a sequence of anomalous seismic activity, quiescence, and foreshocks. Such higher activity before and after the Kanto earthquake is contrasted with low seismicity during the recent 30-year period. A model is proposed to explain the precursory seismic activity, subsequent quiescence, and foreshocks for the Kanto earthquake. In the model, the transition from precursory seismic activity to quiescence is ascribed to time-dependent fracture due to stress-aided corrosion. Foreshocks are related to an acceleration of premonitory slip shortly before the mainshock slip.  相似文献   

8.
We characterize the Kamchatka seismicity for the period 2005–2007. Regional catalogs of Kamchatka earthquakes were used to develop 2D distributions of parameters of background seismicity. The characteristics we consider include the activity A 10, the slope of the recurrence curve γ, the parameters involved in the methods RTL, ΔS, and the “Z-function”, as well as the control of earthquake clustering. We have detected the space-time agreement between the anomalies exhibited by several parameters.  相似文献   

9.
Numerous cases of precursory seismic quiescence have been reported in recent years. Some investigators have interpreted these observations as evidence that seismic quiescence is a somewhat reliable precursor to moderate or large earthquakes. However, because failures of the pattern to predict earthquakes may not, in general, be reported, and because numerous earthquakes are not preceded by quiescence, the validity and reliability of the quiescence precursor have not been established.We have analyzed the seismicity rate prior to, and in the source region of, 37 shallow earthquakes (M 5.3–7.0) in central California and Japan for patterns of rate fluctuation, especially precursory quiescence. Nonuniformity in rate for these pre-mainshock sequences is relatively high, and numerous intervals with significant (p<0.10) extrema in rate are observed in some of the sequences. In other sequences, however, the rate remains within normal limits up to the time of the mainshock. Overall, in terms of an observational basis for intermediate-term earthquake prediction, no evidence is found in the cases studied for a systematic, widespread or reliable pattern of quiescence prior to the mainshocks.In earthquake sequences comprising full seismic cycles for 5 sets of (M 3.7–5.1) repeat earthquakes on the San Andreas fault near Bear Valley, California, the seismicity rates are found to be uniform. A composite of the estimated rate fluctuations for the sequences, normalized to the length of the seismic cycle, reveals a weak pattern of a low rate in the first third of the cycle, and a high rate in the last few months. While these observations are qualitative, they may represent weak expressions of physical processes occurring in the source region over the seismic cycle.Re-examination of seismicity rate fluctuations in volumes along the creeping section of the San Andreas fault specified by Wyss and Burford (1985) qualitatively confirms the existence of low-rate intervals in volumes 361, 386, 382, 372 and 401. However, only the quiescence in volume 386 is found by the present study to be statistically significant.  相似文献   

10.
—A succession of precursory changes of seismicity characteristic to earthquakes of magnitude 7.0–7.5 occurred in advance of the Kobe 1995, M = 7.2, earthquake. Using the Japan Meteorological Agency (JMA) regional catalog of earthquakes, the M8 prediction algorithm (Keilies-Borko and Kossobokov, 1987) recognizes the time of increased probability, TIP, for an earthquake with magnitude 7.0–7.5 from July 1991 through June 1996. The prediction is limited to a circle of 280-km radius centered at 33.5°N, 133.75°E. The broad area of intermediate-term precursory rise of activity encompasses a 175 by 175-km square, where the sequence of earthquakes exhibited a specific intermittent behavior. The square is outlined as the second-approximation reduced area of alarm by the "Mendocino Scenario" algorithm, MSc (Kossobokov et al., 1990). Moreover, since the M8 alarm starts, there were no swarms recorded except the one on 9–26 Nov. 1994, located at 34.9°N, 135.4°E. Time, location, and magnitude of the 1995 Kobe earthquake fulfill the M8-MSc predictions. Its aftershock zone ruptured the 54-km segment of the fault zone marked by the swarm, directly in the corner of the reduced alarm area. The Kobe 1995 epicenter is less than 50 km from the swarm and it coincides with the epicenter of the M 3.5 foreshock which took place 11 hours in advance.  相似文献   

11.
I suggest that earthquake precursors can be divided into two major categories, physical and tectonic. I define physical precursor to be a direct or indirect indication of initiation or progression of an irreversible rupture-generating physical process within the preparation zone of a forthcoming earthquake. Tectonic precursor is defined as a manifestation of tectonic movement which takes place outside the preparation zone of an impending earthquake as a link in a chain of particular local tectonism in each individual area preceding the earthquake.Most intermediate-term, short-term and immediate precursors of various disciplines within the source regions of main shocks are considered physical ones. Some precursory crustal deformations around the source regions are, however, possibly tectonic precursors, because they may be caused by episodic plate motions or resultant block movements in the neighboring regions of the fault segments that will break. A possible example of this phenomena is the anomalous crustal uplift in the Izu Peninsula, Japan, before the 1978 Izu-Oshima earthquake ofM s 6.8. Some precursory changes in seismicity patterns in wide areas surrounding source regions also seem to be tectonic precursors, because they were probably caused by the particular tectonic setting of each region. A typical example is a so-called doughnut pattern before the 1923 Kanto, Japan, earthquake ofM s 8.2.Although most studies on earthquake precursors so far seem to regard implicitly all precursory phenomena observed as physical ones, the two categories should be distinguished carefully when statistical analysis or physical modeling is carried out based on reported precursory phenomena. In active plate boundary zones, where a practical strategy for earthquake prediction may well be different from that in intraplate regions, tectonic precursors can be powerful additional tools for intermediate-term earthquake prediction.  相似文献   

12.
In this study, the seismic quiescence prior to hazardous earthquakes was analyzed along the Sumatra-Andaman subduction zone (SASZ). The seismicity data were screened statistically with mainshock earthquakes of M w?≥?4.4 reported during 1980–2015 being defined as the completeness database. In order to examine the possibility of using the seismic quiescence stage as a marker of subsequent earthquakes, the seismicity data reported prior to the eight major earthquakes along the SASZ were analyzed for changes in their seismicity rate using the statistical Z test. Iterative tests revealed that Z factors of N?=?50 events and T?=?2?years were optimal for detecting sudden rate changes such as quiescence and to map these spatially. The observed quiescence periods conformed to the subsequent major earthquake occurrences both spatially and temporally. Using suitable conditions obtained from successive retrospective tests, the seismicity rate changes were then mapped from the most up-to-date seismicity data available. This revealed three areas along the SASZ that might generate a major earthquake in the future: (i) Nicobar Islands (Z?=?6.7), (ii) the western offshore side of Sumatra Island (Z?=?7.1), and (iii) western Myanmar (Z?=?6.7). The performance of a stochastic test using a number of synthetic randomized catalogues indicated these levels of anomalous Z value showed the above anomaly is unlikely due to chance or random fluctuations of the earthquake. Thus, these three areas have a high possibility of generating a strong-to-major earthquake in the future.  相似文献   

13.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

14.
This paper reviews the precursory phenomena of the 2011 M W9 Tohoku earthquake in Japan that emerge solely when we analyze the seismicity data in a new time domain termed natural time. If we do not consider this analysis, important precursory changes cannot be identified and hence are missed. Natural time analysis has the privilege that enables the introduction of an order parameter of seismicity. In this frame, we find that the fluctuations of this parameter exhibit an unprecedented characteristic change, i.e., an evident minimum, approximately two months before Tohoku earthquake, which strikingly is almost simultaneous with unique anomalous geomagnetic field variations recorded mainly on the z component. This is consistent with our finding that such a characteristic change in seismicity appears when a seismic electric signal (SES) activity of the VAN method (from the initials of Varotsos, Alexopoulos, Nomicos) initiates, and provides a direct confirmation of the physical interconnection between SES and seismicity.  相似文献   

15.
Introduction Data mining (SHAO and YU, 2003) is a new kind of technique developed with database and artificial intelligence in recent years, which processes the data in the database to abstract the im- plied and pre-unknown, but potentially useful information and knowledge from large amounts of incomplete, noisy, blurring and stochastic data. For data mining, data purging is an important link beforehand that includes eliminating noise, making up lost domain, and deleting ineffective data, as…  相似文献   

16.
利用模板匹配方法对2015年11月23日青海省祁连县M_S5.2地震进行遗漏地震检测研究,由于主震后短时间内目录中遗漏事件较多,故对主震后1天的连续波形进行检测。主震后1天内青海测震台网记录到的余震个数(包括单台)共62个,选取主震后M_L1.0以上余震30个作为模板事件,通过匹配滤波的方式扫描出遗漏地震31个,约为台网目录给出的0.5倍。基于包络差峰值振幅与震级的线性关系估测检测事件的震级参数,最后将检测后的余震目录与台网余震目录在主震后1天内的最小完备震级进行对比分析,结果发现检测后最小完备震级从M_L1.2降到了M_L0.7,得到青海测震台网在祁连地区最小完整性震级为M_L0.7。  相似文献   

17.
宋金  蒋海昆  孟令媛  臧阳 《中国地震》2017,33(2):219-228
本文采用分层粘弹性介质模型计算了汶川地震对芦山震中产生的库仑应力加载的影响,进而结合Dieterich(1994)提出的速率状态摩擦定律给出芦山附近区域6级地震累积发震概率随时间的变化。结果显示,2013年芦山7.0级地震时其累积发震概率达18%,说明汶川地震产生的应力扰动加速了芦山地震的发生。本文还计算了汶川、芦山2次地震对其间"破裂空段"处产生的累积库仑应力扰动的影响,结合背景地震发生率,给出了"破裂空段"处6级地震累积发震概率变化。虽然计算结果可能受到大邑地震、介质模型参数的选取和背景地震发生概率等因素影响而存在一定误差,但"破裂空段"在2次强震应力加载下累积发震概率是不断增大的,因此我们认为"破裂空段"处发生中强地震的紧迫性不断增强。  相似文献   

18.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

19.
The improved calculation method ofb value is presented in this paper. The method can enlarge the role of earthquake occurrence frequency inb value calculation and thus increase theb value variation amplitude. In this case, the combination structure variation between earthquake magnitudes and corresponding frequencies could be shown clearly. According to the calculation and analysis for limited mainshocks in the complete seismicity data of selected monitored area with assigned consistent lowest magnitude, the precursor anomaly features, quantitative indexes and the calculation formula of relative subject function ofb value variation have been preliminarily worked out. The prediction in short period (from 1 to 3 months) for damage earthquakes in the monitored area mentioned above can be put forward on the basis of the results of quantitative calculation and analysis.  相似文献   

20.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号