首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mapped area of Harmakhis Vallis, at the eastern Hellas Planitia region (35°30–42°50′S; 91°00–97°30′E), covers the surface area of about 212,000 km2. The region displays an enhanced modification of the initial topography formed by the Hellas impact. The long and complex history of degradation and alteration involves mass-wasting processes, volcanism and fluvial activity, confronting effects of climate-induced slow mass-wasting processes to effects caused by temporary, catastrophic events (impact cratering, volcanism, etc.). Geological mapping at scale of 1:1,500,000 (full scale at 1:540,000) have been carried out on multiple co-registered data sets available from the past and ongoing orbiter missions to Mars. The mapped geomorphic features of small- and medium-scales reveal in detail events that shaped the topography of the region throughout history, providing specific constraints on the geologic and climatic history of the region. This study highlights events from the most recent Martian history, including fluvial activity recorded in relation to a debris apron flanking Centauri Montes, and evidence of recent positive geothermal anomalies of a high heat-flux with relatively small spatial extents, on the timescale of several million years ago.  相似文献   

2.
The mid- and high-latitudes of Mars are covered by a smooth young mantle that is interpreted as an atmospherically derived air-fall deposit of ice and dust related to recent climate changes. In order to determine relative and absolute ages of this surface unit within the southern hemisphere, a systematic survey of all available HiRISE and CTX images in the Malea Planum region from 55–60°S latitude and 50–70°E longitude was performed and the distribution and the morphology of small impact craters on the mantle deposit were investigated. Using crater size-frequency measurements, we derived absolute model ages of ~3–5 Ma for the surface of the mantle, immediately south of the Hellas basin rim. Morphologic observations of the mantle, its fresh appearance, very low number of craters, and superposition on older units support this very young Amazonian age. Nearly all observed craters on the smooth mantle in Malea Planum are small and show signs of erosion, evidence for the ongoing modification of the ice–dust mantle. However, this modification has not been strong enough to reset the surface age. Compared to the ice–dust mantle at higher latitudes in the northern and southern hemisphere, the surface of the mantle in Malea Planum is older and thus has been relatively stable during obliquity changes in the last ~3–5 Ma. This is consistent with the hypothesis that the ice–dust mantle is a complex surface deposit of different layers, that shows a strong latitude dependence in morphology and has been deposited and degraded at different times in martian history.  相似文献   

3.
We have mapped the area of Isidis Planitia (1–27°N, 75–103°E) in order to assess the geologic history of this region using modern data sets such as MOLA topography and the high-resolution images provided by the HRSC, CTX, and HiRISE cameras. Results of our mapping show that the geologic history of Isidis Planitia consists of three principal episodes. (1) Impact dominated episode (Noachian, until ~3.8 Ga): During this time, the oldest materials in the study area were formed mostly by impact reworking and mass-wasting. Other processes (e.g., volcanism and fluvial/glacial activity) likely operated at this time but played a subordinate role. (2) An episode related to volcanic and fluvial/glacial activities (late Noachian–early Amazonian, ~3.8–2.8 Ga): Volcanism appears as the most important process at the beginning of this episode (~3.8–3.5 Ga) and was responsible for the formation of a large circum-Isidis volcanic province by the early Hesperian epoch. Volcanic materials covered large portions of the Isidis rim, almost completely buried the previous crater record on the floor of the Isidis basin, and probably were the major contributors to the filling of the basin. Fluvial/glacial processes prevailed closer to the end of the episode (early Hesperian–early Amazonian, ~3.5–2.8 Ga) and were responsible for widespread resurfacing in the Isidis Planitia region, mostly at ~3.1–3.4 Ga. Glaciers and/or ice sheets probably resulted in a massive glaciation of the rim and the floor of the Isidis basin. The total volume of material eroded from the Isidis rim by glacial and fluvial activity is estimated to be about 35,000–50,000 km3, which is equivalent to a composite layer about 40–60 m thick on entire floor of the basin. More important, however, is that the eroded materials were likely saturated with ice/water and could form wet deposits on the floor. (3) Wind-dominated episode (since early Amazonian, ~2.8 Ga): Wind activity dominated the later geologic history of Isidis Planitia but resulted only in minor modification of the surface.  相似文献   

4.
Martian magnetic anomalies have been revealed by the Mars Global Surveyor (MGS) mission in the south hemisphere of Mars. The present study models anomalies located in the ancient Terra Sirenum area between latitudes 26°S and 40°S and longitudes 185°E and 210°E using forward and inverse approaches. While the high-altitude measurements reveal the presence of two main magnetic anomalies, three are detected by low-altitude data. They are modeled as uncorrelated dipolar sources. Forward models predict large magnetizations between 30 and 60 A/m. A generalized non-linear inversion is used to determine the characteristics of the dipoles, based on different subsets of data. Low-altitude measurements inversion leads to more reliable results than those obtained by the inversion of high-altitude measurements only. Inversion of both low- and high-altitude data together provides with three dipoles that explain more than 57% of the signal, within this 106 km2 area. All dipoles have large magnetizations. Serpentinization of the early martian crust can explain such remanent magnetizations. Two resulting dipoles are 56 km deep, which suggests a locally thick martian crust. The last one is shallower (31 km). This indicates different origins and/or magnetization processes. Paleomagnetic poles are calculated and located around the Tharsis bulge. It suggests that Tharsis formed at high latitudes and moved toward its present location by polar reorientation.  相似文献   

5.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   

6.
The lack of distinct magnetic signatures observed by Mars Global Surveyor (MGS) over the impact craters and impact-related Quasi-Circular-Depressions (QCDs) with diameters greater than 200 km located on South Province, south of 30S and from almost the west of Hellas to Argyre basins, implies a weakly magnetized crust. Using MOLA topography and the recent JPL gravity model of Mars we determine the structure of the crust beneath the craters and impact-related QCDs, and show that the impacts that have created these features were capable of strongly disturbing the crust directly beneath. On the basis of theoretical magnetic anomaly modeling and shock demagnetization models, we demonstrate that the impacts are capable of demagnetizing the entire crust beneath and creating distinct magnetic anomalies at the satellite altitude of 400 km in case the crust was appreciably magnetized prior to the impacts. We derive the magnetic anomalies of these features using the radial component of the high-altitude nighttime MGS data. An upper limit of <2 × 104 A for the bulk magnetization of the crust beneath South Province is estimated, which is about 30 times less than that underlying Terra Cimmeria and Terra Sirenum. Similar weak bulk magnetization is obtained for part of the crust surrounding Hellas, Isidis, and Argyre basins.  相似文献   

7.
《Planetary and Space Science》2006,54(13-14):1298-1314
The planetary fourier spectrometer (PFS) for the Venus Express mission is an infrared spectrometer optimized for atmospheric studies. This instrument has a short wavelength (SW) channel that covers the spectral range from 1700 to 11400 cm−1 (0.9–5.5 μm) and a long wavelength (LW) channel that covers 250–1700 cm−1 (5.5–45 μm). Both channels have a uniform spectral resolution of 1.3 cm−1. The instrument field of view FOV is about 1.6 ° (FWHM) for the short wavelength channel and 2.8 ° for the LW channel which corresponds to a spatial resolution of 7 and 12 km when Venus is observed from an altitude of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmospheric properties but also surface properties (temperature) and the surface-atmosphere interaction (volcanic activity).PFS works primarily around the pericentre of the orbit, only occasionally observing Venus from larger distances. Each measurements takes 4.5 s, with a repetition time of 11.5 s. By working roughly 1.5 h around pericentre, a total of 460 measurements per orbit will be acquired plus 60 for calibrations. PFS is able to take measurements at all local times, enabling the retrieval of atmospheric vertical temperature profiles on both the day and the night side.The PFS measures a host of atmospheric and surface phenomena on Venus. These include the:(1) thermal surface flux at several wavelengths near 1 μm, with concurrent constraints on surface temperature and emissivity (indicative of composition); (2) the abundances of several highly-diagnostic trace molecular species; (3) atmospheric temperatures from 55 to 100 km altitude; (4) cloud opacities and cloud-tracked winds in the lower-level cloud layers near 50-km altitudes; (5) cloud top pressures of the uppermost haze/cloud region near 70–80 km altitude; and (6) oxygen airglow near the 100 km level. All of these will be observed repeatedly during the 500-day nominal mission of Venus Express to yield an increased understanding of meteorological, dynamical, photochemical, and thermo-chemical processes in the Venus atmosphere. Additionally, PFS will search for and characterize current volcanic activity through spatial and temporal anomalies in both the surface thermal flux and the abundances of volcanic trace species in the lower atmosphere.Measurement of the 15 μm CO2 band is very important. Its profile gives, by means of a complex temperature profile retrieval technique, the vertical pressure-temperature relation, basis of the global atmospheric study.PFS is made of four modules called O, E, P and S being, respectively, the interferometer and proximity electronics, the digital control unit, the power supply and the pointing device.  相似文献   

8.
We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about −3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.  相似文献   

9.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

10.
We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm?1) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004–2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 10°S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of ~1 K at 60° south and ~3 K at 60° north, in general agreement with a previous analysis of CIRS data (Jennings et al., 2009), and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60°N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is ~1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J m?2 s?1/2 K?1. These results provide important constraints on coupled surface–atmosphere models of Titan's meteorology and atmospheric dynamic.  相似文献   

11.
《New Astronomy》2007,12(7):590-596
We assume that the helium-I lines emitted by the massive binary system η Carinae are formed in the acceleration zone of the less-massive secondary star. We calculate the Doppler shift of the lines as a function of orbital phase and of several parameters of the binary system. We find that a good fit is obtained if the helium lines are formed in the region where the secondary wind speed is vzone = 430 km s−1. The acceptable binary eccentricity is in the range 0.90  e  0.95, and the inclination angle (the angle between a line perpendicular to the orbital plane and the line of sight) is in the range 40°  i  55°. Lower values of e require higher values of i, and vice versa. The binary system is oriented such that the secondary star is in our direction (closer to us) during periastron passage. The orbital motion can account in part to the Doppler shift of the peak in X-ray emission.  相似文献   

12.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

13.
We describe the results of our morphologic, stratigraphic and mineralogic investigations of fluvial landforms, paleolakes and possible shoreline morphologies at the Libya Montes/Isidis Planitia boundary. The landforms are indicative of aqueous activity and standing bodies of water, including lakes, seas and oceans, that are attributed to a complex hydrologic cycle that may have once existed on Mars in the Noachian (>3.7 Ga) and perhaps also in the Hesperian (>3.1 Ga). Our observations of the Libya Montes/Isidis Planitia boundary between 85°/86.5°E and 1.8°/5°N suggest, that (1) the termination of valley networks between roughly ?2500 and ?2800 m coincide with lake-size ponding in basins within the Libya Montes, (2) an alluvial fan and a possible delta, layered morphologies and associated Al-phyllosilicates identified within bright, polygonally fractured material at the front of the delta deposits are interpreted to be the results of fluvial activity and discharge into a paleolake, (3) the Arabia “shoreline” appears as a series of possible coastal cliffs at about ?3600 and ?3700 m indicating two distinct still stands and wave-cut action of a paleosea that temporarily filled the Isidis basin the Early Hesperian, and (4) the Deuteronilus “shoreline” appears at ?3800 m and is interpreted to be a result of the proposed sublimation residue of a frozen sea that might have filled the Isidis basin, similar to the Vastitas Borealis Formation (VBF) identified in the northern lowlands. We interpret the morphologic–geologic setting and associated mineral assemblages of the Libya Montes/Isidis Planitia boundary as results of fluvial activity, lake-size standing bodies of water and an environmental change over time toward decreasing water availability and a cold and dry climate.  相似文献   

14.
We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for “outburst” eruptions and for a multitude of very small (“myriad”) hot spots, we account for ~62 × 1012 W (~59 ± 7% of Io’s total thermal emission). Loki Patera contributes, on average, 9.6 × 1012 W (~9.1 ± 1%). All dark paterae contribute 45.3 × 1012 W (~43 ± 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 × 1012 W (~5.3 ± 0.6%). Bright paterae contribute ~2.6 × 1012 W (~2.5 ± 0.3%). Outburst eruption phases and very small hot spots contribute no more than ~4% of Io’s total thermal emission: this is probably a maximum value. About 50% of Io’s volcanic heat flow emanates from only 1.2% of Io’s surface. Of Io’s heat flow, 41 ± 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at ~315°W and ~105°W (using 30° bins). There is a minimum in thermal emission at around 200°W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from predicted global heat flow patterns resulting from tidal heating in an asthenosphere. Global volcanic heat flow is dominated by thermal emission from paterae, especially from Loki Patera (312°W, 12°N). Thermal emission from dark flows maximises between 165°W and 225°W. Finally, it is possible that a multitude of very small hot spots, smaller than the present angular resolution detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds, may be responsible for at least part of the heat flow that is not associated with known sources. Such activity should be sought out during the next mission to Io.  相似文献   

15.
We present observations of the O2(a1Δg) nightglow at 1.27 μm on Mars using the SPICAM IR spectrometer onboard of the Mars Express orbiter. In contrast to the O2(a1Δg) dayglow that results from the ozone photodissociation, the O2(a1Δg) nightglow is a product of the recombination of O atoms formed by CO2 photolysis on the dayside at altitudes higher than 80 km and transported downward above the winter pole by the Hadley circulation. The first detections of the O2(a1Δg) nightglow in 2010 indicate that it is about two order of magnitude less intense than the dayglow (Bertaux, J.-L., Gondet, B., Bibring, J.-P., Montmessin, F., Lefèvre, F. [2010]. Bull. Am. Astron. Soc. 42, 1040; Clancy et al. [2010]. Bull. Am. Astron. Soc. 42, 1041). SPICAM IR sounds the martian atmosphere in the near-IR range (1–1.7 μm) with the spectral resolution of 3.5 cm?1 in nadir, limb and solar occultation modes. In 2010 the vertical profiles of the O2(a1Δg) nightside emission have been obtained near the South Pole at latitudes of 82–83°S for two sequences of observations: Ls = 111–120° and Ls = 152–165°. The altitude of the emission maximum varied from 45 km on Ls = 111–120° to 38–49 km on Ls = 152–165°. Averaged vertically integrated intensity of the emission at these latitudes has shown an increase from 0.22 to 0.35 MR. Those values of total vertical emission rate are consistent with the OMEGA observations on Mars-Express in 2010. The estimated density of oxygen atoms at altitudes from 50 to 65 km varies from 1.5 × 1011 to 2.5 × 1011 cm?3. Comparison with the LMD general circulation model with photochemistry (Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F. [2004]. J. Geophys. Res. 109, E07004; Lefèvre et al. [2008]. Nature 454, 971–975) shows that the model reproduces fairly well the O2(a1Δg) emission layer observed by SPICAM when the large field of view (>20 km on the limb) of the instrument is taken into account.  相似文献   

16.
The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66–72 km while night-side images in the near infrared (1.74 μm) map the opacity of the lower cloud deck at 44–48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s?1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3–10 m s?1 with a mean of 5 m s?1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s?1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s?1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s?1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.  相似文献   

17.
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 ± 0.025°/dy (41.335 ± 0.005 h) prior to the 2000 perihelion passage, 210.448 ± 0.016°/dy (41.055 ± 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 ± 0.030°/dy (40.783 ± 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 ± 0.012°/dy (40.827 ± 0.002 h) in the interval 2006–2010 following the 2005 perihelion passage. The period decreased by 16.8 ± 0.3 min during the 2000 passage and by 13.7 ± 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 ± 0.003°/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations.The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4–15) pole and longitude system. The possibility of a 180° error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42.We find that a net torque in the range of 0.3–2.5 × 107 kg m2 s?2 acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than ~1° per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.  相似文献   

18.
The purpose of the present study is to investigate the association of solar energetic particle (SEP) events with halo coronal mass ejections (CME) and with their associated solar flares during the period 1997–2014 (solar cycle 23 and 24). We have found that halo CMEs are more effective in producing SEP events. The occurrence probability and peak fluxes of SEPs strongly depend on the halo CMEs speed (V) as follows. The highest associations, 56% for occurrence probability and 90% for average peak fluxes, are found for the halo CMEs with V> 1400 km s−1 but the lowest associations, 20% for occurrence probability and 5% for average peak fluxes, are found for halo CMEs with speed range 600 ≤ V ≤ 1000 km s−1. We have also examined the relationship between SEP events and halo CME associated solar flares and found that 73% of events are associated with western solar flares while only 27% are with eastern solar flares. For longitudinal study, 0–20° belt is found to be more dominant for the SEP events. The association of SEP events with latitudinal solar flares is also examined in the study. 51% of events are associated with those halo CMEs associated solar flares which occur in the southern hemisphere of the Sun while 49% are with those solar flares that occur in the northern hemisphere of the Sun. Also, 10–20° latitudinal belt is found to be likely associated with the SEP events. Further, 45% of SEP events are associated with M-class solar flares while 44% and 11% are with X and C-class respectively. Maximum number of SEP events are found for the fast halo CME associated X- class solar flares (68%) than M and C- class solar flares.  相似文献   

19.
《Planetary and Space Science》2007,55(10):1328-1345
The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm.The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures.A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V.Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap.These results should provide new, useful constraints in models of the Martian climate system and volatile cycles.  相似文献   

20.
Gullies are widespread on slopes on the surface of Mars and have been investigated by numerous authors, yet their formation processes remain elusive. In an attempt to understand the possibility of a water-based origin for these forms, we undertook a series of flume experiments at Earth surface temperatures and pressures. Our objectives were to produce forms that resemble those most commonly observed on Mars, documenting their morphometric characteristics and identifying any statistically significant relationships between form and controlling factors of slope and flow rate. Experiments were conducted in a 1×1.5 m2 flume filled with medium grain size sand. The experiments were run over a slope angle range of 10–30°, corresponding to the range for gullies on Mars. Water from a constant-head tank fed through 5 mm silicone hose to a rotameter and then released just below the surface at the top of the slope. Gullies were produced at slope angle values of 10°, 20°, and 30° and flow rate values of 445, 705, 965, and 1260 mL min?1 at each angle. Eighteen parameters were identified and subsequently measured on each gully produced in the flume. Gully forms were successfully reproduced and displayed development of the fundamental morphological components observed on Mars: alcove, channel, and apron. Slope–gully form relationships for each component revealed the following results: higher slope angles formed shorter gullies with thicker apron deposits. Moreover, longer gullies were seen at higher flow rates. We concluded that forms visually similar to those observed on Mars can be created by water in the laboratory flume under terrestrial conditions. Morphometric parameters can be measured and permit identification of controlling factors. Experimental simulation of gullies appears possible with proper scaling of experimental parameters. Although not directly scalable to Mars, flume gully parameters may be used to develop numerical models in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号