首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate subsurface structure and seismogenic layers, 3D velocity inversion was carried out in the source zone of 1905 Kangra earthquake (M8.0) in the northwestern Himalaya. P-wave and S-wave phase data of 159 earthquakes recorded by a network of 21 stations were used for this purpose. Inverted velocity tomograms up to a depth range of 18 km show significant variations of 14% in Vp and Vs and 6% in the Vp/Vs across the major tectonic zones in the region. Synthesis of seismicity pattern, velocity structure, distinctive focal mechanisms coupled with nature of stress distribution allows mapping of three different source regions that control regional seismotectonics. Accumulating strains are partly consumed by sliding of Chamba Nappe to the southwest through reverse-fault movements along Chamba/Panjal/Main Boundary Thrusts. This coupled with normal-fault type displacements along Chenab Normal Fault in the north account for low magnitude widespread seismicity in upper 8–10 km of the crust. At intermediate depths from 8 to 15 km, adjusting to residual compressive stresses, the detachment or lower end of the MBT slips to produce thrust dominated seismicity. Nucleation of secondary stresses in local NE–SW oriented structure interacts in complex manner with regional stresses to generate normal type earthquakes below the plane of detachment and therefore three seismic regimes at different depths produce intense seismicity in a block of 30 × 30 km2 centered NE to the epicenter of Kangra earthquake.  相似文献   

2.
The Sannio-Matese region is one of the most seismically active regions of Italy and has been struck by large historical earthquakes. At present, the area is characterized by low magnitude background seismicity and small seismic sequences following M4 main events. In this paper, we show Vp and Vp/Vs models and 3D locations for a complete set of earthquakes occurring in the period 1991–2001. We observe a significant crustal heterogeneity, with large scale east-verging high Vp fault-related-folds, stacked by the Pliocene compression. The relocated earthquakes cluster along a 70° east-dipping, NW-striking plane located at the border of the high Vp thrust units. Normal fault earthquakes related to the young and active extension occur within these high Vp zones, interpreted as high strength material. We expect large future earthquakes to occur within these high Vp zones actually characterized by low magnitude seismicity at their borders.  相似文献   

3.
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M > 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.  相似文献   

4.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

5.
The seismicity, deformation rates and associated erosion in the Taiwan region clearly demonstrate that plate tectonic and orogenic activities are at a high level. Major geologic units can be neatly placed in the plate tectonic context, albeit critical mapping in specific areas is still needed, but the key processes involved in the building of the island remain under discussion. Of the two plates in the vicinity of Taiwan, the Philippine Sea Plate (PSP) is oceanic in its origin while the Eurasian Plate (EUP) is comprised partly of the Asian continental lithosphere and partly of the transitional lithosphere of the South China Sea basin. It is unanimously agreed that the collision of PSP and EU is the cause of the Taiwan orogeny, but several models of the underlying geological processes have been proposed, each with its own evolutionary history and implied subsurface tectonics.TAIGER (TAiwan Integrated GEodynamics Research) crustal- and mantle-imaging experiments recently made possible a new round of testing and elucidation. The new seismic tomography resolved structures under and offshore of Taiwan to a depth of about 200 km. In the upper mantle, the steeply east-dipping high velocity anomalies from southern to central Taiwan are clear, but only the extreme southern part is associated with seismicity; toward the north the seismicity disappears. The crustal root under the Central Range is strongly asymmetrical; using 7.5 km/s as a guide, the steep west-dipping face on the east stands in sharp contrast to a gradual east-dipping face on the west. A smaller root exists under the Coastal Range or slightly to the east of it. Between these two roots lies a well delineated high velocity rise spanning the length from Hualien to Taitung. The 3-D variations in crustal and mantle structures parallel to the trend of the island are closely correlated with the plate tectonic framework of Taiwan. The crust is thickest in the central Taiwan collision zone, and although it thins toward the south, the crust is over 30 km thick over the subduction in the south; in northern Taiwan, the northward subducting PSP collides with Taiwan and the crust thins under northern Taiwan where the subducting indenter reaches 50 km in depth. The low Vp/Vs ratio of around 1.6 at a mid-crustal depth of 25 km in the Central Range indicates that current temperatures could exceed 700 °C. The remarkable thickening of the crust under the Central Range, its rapid uplift without significant seismicity, its deep exhumation and its thermal state contribute to make it the core of orogenic activities on Taiwan Island.The expanded network during the TAIGER deployment captured broadband seismic data yielding enhanced S-splitting results with mainly SKS/SKKS data. The polarization directions of the fast S-waves follow very closely the structural trends of the island, supporting the concept of a vertically coherent Taiwan orogeny in the outer few hundred kilometers of the Earth.  相似文献   

6.
Artificial water reservoir triggered earthquakes are now known to have occurred at over 120 sites globally. The part played by the reservoirs in triggering is not exactly known due to lack of near field observations of triggered earthquakes. Koyna, located near the west coast of India, where triggered earthquakes have been occurring since 1962 provides an excellent site for near field observations of the target M  2 earthquakes. A 6 borehole seismic network has been deployed recently in the Koyna region at depths of 981–1522 m to improve the hypocenter locations. During May–December 2015, a total of 1039 earthquakes of ML  0.5 were located using the borehole seismic network. The region is also monitored through a dense network of 23 surface broad-band stations. Our analysis indicates a significant improvement in the estimation of absolute locations of earthquakes with errors of the order of ± 300 m, combining both the networks. Based on seismicity, and logistics, a block of 2 × 2 km2 area has been chosen for drilling the first pilot borehole of ~ 3 km depth, where M  2 earthquakes have been occurring frequently since 2005.  相似文献   

7.
In the paper we report the state-of-the-art of seismicity study in the Baikal rift system and the general results obtained. At present, the regional earthquake catalog for fifty years of the permanent instrumental observations consists of over 185,000 events. The spatial distribution of the epicenters, which either gather along well-delineated belts or in discrete swarms is considered in detail for different areas of the rift system. At the same time, the hypocenters are poorly constrained making it difficult to identify the fault geometry. Clustered events like aftershock sequences or earthquake swarms are typical patterns in the region; moreover, aftershocks of M  4.7 earthquakes make up a quarter of the whole catalog. The maximum magnitude of earthquakes recorded instrumentally is MLH7.6 for a strike-slip event in the NE part of the Baikal rift system and MLH6.8 for a normal fault earthquake in the central part of the rift system (Lake Baikal basin). Predominant movement type is normal faulting on NE striking faults with a left lateral strike-slip component on W–E planes. In conclusion, some shortcomings of the seismic network and data processing are pointed out.  相似文献   

8.
Following the 1999 Mw 7.6 Chi-Chi earthquake, a large amount of seismicity occurred in the Nantou region of central Taiwan. Among the seismic activities, eight Mw  5.8 earthquakes took place following the Chi-Chi earthquake, whereas only four earthquakes with comparable magnitudes took place from 1900 to 1998. Since the seismicity rate during the Chi-Chi postseismic period has never returned to the background level, such seismicity activation cannot simply be attributed to modified Omori’s Law decay. In this work, we attempted to associate seismic activities with stress evolution. Based on our work, it appears that the spatial distribution of the consequent seismicity can be associated with increasing coseismic stress. On the contrary, the stress changes imparted by the afterslip; lower crust–upper mantle viscoelastic relaxation; and sequent events resulted in a stress drop in most of the study region. Understanding seismogenic mechanisms in terms of stress evolution would be beneficial to seismic hazard mitigation.  相似文献   

9.
Scientists have proposed two fault systems of different ages in the Sea of Marmara: the Thrace-Eski?ehir Fault Zone of Early Miocene–Early Pliocene age and the North Anatolian Fault Zone of Late Pliocene–Recent age. Different seismicity rates and extensions of these faults onto land near ?stanbul have been suggested. One of the reasons for these differences is the contamination of seismicity catalogs by seismic events from quarries operated in ?stanbul and its vicinity, including Gaziosmanpa?a (Cebeci and Kemerburgaz), Çatalca, Ömerli, Gebze, and Hereke.In this study, we investigated waveforms of 179 seismic events (1.8 < Md < 3.0) from the KOERI, NEMC digital database. We determined differences between earthquakes and quarry blasts based on time- and frequency-domain analyses of their seismograms (amplitude peak ratio, power ratio, and spectral amplitude ratio) and used these differences as discriminants. The results of this study indicate that 15% and 85% of the investigated seismic events are earthquakes and quarry blasts, respectively.  相似文献   

10.
Although orogeny tapers off in western Taiwan large and small earthquakes do occur in the Taiwan Strait, a region largely untouched in previous studies owing mostly to logistical reasons. But the overall crustal structure of this region is of particular interest as it may provide a hint of the proto-Taiwan before the orogeny.By combining time domain empirical Green’s function (TDEGF) from ambient seismic noise using station-pairs and traditional surface wave two-station method (TS) we are able to construct Rayleigh wave phase velocity dispersion curves between 5 and 120 s. Using Broadband Array in Taiwan for Seismology (BATS) stations in Taiwan and in and across the Strait we are able to derive average 1-D Vs structures in different parts of this region. The results show significant shear velocity differences in the upper 15 km crust as expected. In general, the highest Vs in the upper crust observed in the coastal area of Mainland China and the lowest Vs appears along the southwest offshore of the Taiwan Island; they differ by about 0.6–1.1 km/s. For different parts of the Strait, the upper crust Vs structures are lower in the middle by about 0.1–0.2 km/s relative to those in the northern and southern parts. The upper mantle Vs structure (Moho – 150 km) beneath the Taiwan Strait is about 0.1–0.3 km/s lower than the AK135 model. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island. The inversion of seismic velocity structures using shorter period band dispersion data in the sea areas with water depth deeper than 1000 m should take water layer into consideration except for the continental shelves.  相似文献   

11.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

12.
13.
The study area is the Van earthquake region. It is located in the western section of the East Anatolian–Iranian plateau outside and to the east of the Karlıova triple junction. Based on the tectonic periods, the rock units exposed in the study area are classified into two common categories. These are the Pre-Late Pliocene paleotectonic units and the Plio-Quaternary neotectonic units. The Paleotectonic units are composed of the Yüksekova Complex of Campanian–Maastrichtian age and the Kırkgeçit Formation of Oligo-Miocene age. The paleotectonic units are intensely deformed (folded, thrust to reverse faulted and converted into an imbricate stack). The neotectonic units are composed of fluvio-lacustrine sedimentary facies with volcanic interclations. It is full of soft-sedimentary structures such as deltaic structure, slump fold, sand dikes to sills and normal to reverse types of growth faults which imply to a sedimentation accompanied by both a volcanic activity and active tectonics. Originally the Paleotectonic units are overlain with an angular unconformity by the nearly flat-lying neotectonic units. This angular unconformity and the big difference in the deformational patterns of both categories of rock units indicate an inversion in tectonic regime in Late Pliocene. The new tectonic regime is the strike-slip faulting-dominated neotectonic regime. It is governed by an approximately N–S-directed compression, and composed of NW- to NE-trending strike-slip faults, N–S trending oblique-slip normal faults to fissures and the E–W trending thrust to reverse faults. Most of thrust to reverse faults are inherited from the Pre-Late Pliocene paleotectonic regime. Some of them have reactivated and led to the occurrence of large and devastative earthquakes. The last devastative seismic event is the 23 October 2011 Tabanlı (Van) earthquake of Mw = 7.2 that caused 644 deaths and moderate to heavy damage of ¼ of structures (28,532) in Van earthquake region. The source of the Tabanlı earthquake is the Everek erosional reverse fault. In addition the Tabanlı earthquake is the largest seismic event occurred till now in Turkey. It was followed by a series (over 6000) of small-sized aftershocks and severeal moderate-sized indepentent earthquakes of reverse, normal and strike-slip faulting origin. Both the field and new seismic data strongly reveal that the prominent tectonic regime in the East Anatolian plateau is the strike-slip neotectonic regime, not the tensional tectonic regime as has been reported in some previous works. The strike-slip faulting and related deformation are confined into the upper shallowing part (up to 40 km) of the crust, whilst the extensional deformations are the subcrustal processes and being taking place in a squashy zone at the depths of approximately 40–60 km.  相似文献   

14.
《Comptes Rendus Geoscience》2018,350(8):464-475
Seismicity induced by fluid perturbations became an important societal concern since felt earthquakes (Mw up to 6) occurred after anthropogenic activities. In order to mitigate the risks associated with undesired seismicity, as well as to be able to use the micro-seismicity as a probe for in-depth investigation of fluid-driven processes, it is of crucial importance to understand the links between seismicity, fluid pressure and flow. We have developed a series of in-situ, decameter-scale experiments of fault zone reactivation by controlled fluid injection, in order to improve the near-source geophysical and hydromechanical observations. The deployed geophysical monitoring close to the injection allows one to cover the full frequency range of the fault responses from the static deformation to the very high-frequency seismic emissions (up to 4 kHz). Here, we focus on the microseismicity (Mw  –4 to –3) recorded during two fluid injection experiments in low-permeable shale and highly-fractured limestone formations. In both experiments, the spatio-temporal distribution of the seismic events, the energy balance, and the seismic velocity changes of the fractured medium show that most of the deformation does not actually emit seismic signals. The induced deformation is mainly aseismic. Based on these high-resolution multiparametric observations in the near-field, we therefore proposed a new model for injection-induced seismicity: the seismicity is not directly induced by the increasing fluid pressure, but it is rather triggered by the stress perturbations transferred from the aseismic motion caused by the injection.  相似文献   

15.
We present new constraints on an active low-angle normal fault system in the Città di Castello–Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d'Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino–Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area.Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ~ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ~ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX–X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45–50°) to low (25–30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least with dips of 25–30°) may be seismogenic.  相似文献   

16.
In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6–38°N and 68–98°E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1° × 0.1°. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high.  相似文献   

17.
Some 455 events (mb  4.5) in the Indo-Myanmar subduction zone are compiled using the ISC/EHB/NEIC catalogues (1964–2011) for a systematic study of seismic precursors, b-value and swarm activity. Temporal variation of b-value is studied using the maximum likelihood method beside CUSUM algorithm. The b-values vary from 0.95 to 1.4 for the deeper (depth ⩾60 km) earthquakes, and from 0.85 to 1.3 for the shallower (depth <60 km) earthquakes. A sudden drop in the b-value, from 1.4 to 0.9, prior to the occurrence of larger earthquake(s) at the deeper depth is observed. It is also noted that the CUSUM gradient reversed before the occurrence of larger earthquakes. We further examined the seismicity pattern for the period 1988–1995 within a radius of 150 km around the epicentre (latitude: 24.96°N; longitude: 95.30°E) of a deeper event M 6.3 of May 6, 1995 in this subduction zone. A precursory swarm during January 1989 to July 1992 and quiescence during August 1992 to April 1995 are identified before this large earthquake. These observations are encouraging to monitor seismic precursors for the deeper events in this subduction zone.  相似文献   

18.
A blind thrust fault with a unique strike, which is orthogonal to the strike of most tectonic structures in Taiwan, triggered the Jiashian earthquake on March 4, 2010 (M = 6.4; 22.96°N, 120.70°E). This study utilizes 100 global positioning system stations to examine changes of surface displacements during the Jiashian earthquake. We mitigate effects of short-term noise and long-term plate movements from surface displacement data using a frequency dependent filter via the Hilbert–Huang transform and compute the horizontal azimuth (i.e. GPS-azimuth) using residual data at the NS component relative to residual data at the EW component. Analytical results show that orientations of horizontal azimuths were aligned and orthogonal to the strike of the blind thrust fault. Meanwhile, inverse orientations are observed before and after the earthquake that agrees well with the seismic rebound theory. As stress disturbed on strata a few days before the earthquake, an impeded region can be clearly identified by disordered orientations of horizontal azimuths for anticipating the mainshock. These results provide an additional view to explore stress disturbance associated with earthquakes and offer more information to examine diverse models of tectonic evolution in this region.  相似文献   

19.
The Mw 9.0 Tohoku-Oki earthquake that occurred off the Pacific coast of Japan on March 11, 2011, was followed by thousands of aftershocks, both near the plate interface and in the crust of inland eastern Japan. In this paper, we report on two large, shallow crustal earthquakes that occurred near the Ibaraki-Fukushima prefecture border, where the background seismicity was low prior to the 2011 Tohoku-Oki earthquake. Using densely spaced geodetic observations (GPS and InSAR datasets), we found that two large aftershocks in the Iwaki and Kita-Ibarake regions (hereafter referred to as the Iwaki earthquake and the Kita-Ibarake earthquake) produced 2.1 m and 0.44 m of motion in the line-of-sight (LOS), respectively. The azimuth-offset method was used to obtain the preliminary location of the fault traces. The InSAR-based maximum offset and trace of the faults that produced the Iwaki earthquake are consistent with field observations. The fault location and geometry of these two earthquakes are constrained by a rectangular dislocation model in a multilayered elastic half-space, which indicates that the maximum slips for the two earthquakes are 3.28 m and 0.98 m, respectively. The Coulomb stress changes were calculated for the faults following the 2011 Mw 9.0 Tohoku-Oki earthquake based on the modeled slip along the fault planes. The resulting Coulomb stress changes indicate that the stresses on the faults increased by up to 1.1 MPa and 0.7 MPa in the Iwaki and Kita-Ibarake regions, respectively, suggesting that the Tohoku-Oki earthquake triggered the two aftershocks, supporting the results of seismic tomography.  相似文献   

20.
The latest hydraulic fracturing and stress relief measurement data in the Chinese mainland were collected. The total of 3856 data entries are measured at 1474 locations. The measured area covers 75–130°E and 18–47°N, and the depth range varies from surface to 4000 meters depth, which generally includes each active tectonic block of China and each segment of North–South seismic belt. We investigated the tectonic stress field by removing the effect of gravity. For this, we assume lateral constraints and Heim’s rule. The gravity contribution is removed by using the assumption of lateral constraint and Heim’s rule. Our results show: (1) the maximum and the minimum horizontal principal stress σH, σh and the vertical stress σV in the shallow crust of China all increase linearly with depth: σH = 0.0229D + 4.738, σh = 0.0171D + 1.829, σV = 0.0272D. Maximum and minimum horizontal tectonic stress varies as a function of depth D linearly 4.738 < σT < 0.0139D + 4.738 and 1.829 < σt < 0.0162D + 1.829. The horizontal tectonic differential stress is σT  σt = 0.0058D + 2.912. (2) The intermediate value of σT1 (regression value of tectonic stress inferred from the assumption of lateral constraint at 2000 m depth) changes in different areas, the maximum value of which is 45.6 MPa, while the minimum value of which is 26.8 MPa. Horizontal tectonic differential stress σT  σt increases linearly with depth and the maximum and minimum of σT  σt is 25.3 MPa and 13.0 MPa, respectively. In general, the stress magnitude is much higher in western than in eastern China. This indicates that the strong Indo-Eurasian collision dominates the present tectonic stress field in Chinese mainland. (3) Compared with other study regions, the northward crustal compression to the Qinghai-Tibet block is relatively lower in magnitude in the shallow subsurface and higher at deeper depth. (4) The orientations of σT in China mainland generally form a radial scattering pattern centered in Tibetan Plateau. From western to eastern China, they rotate gradually clockwise from NS to NNE, NE, NEE, and SE, which is consistent with the result of focal mechanism solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号