首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The new ESA Venus Express orbiter is the first mission applying the probing technique of solar and stellar occultation to the atmosphere of Venus, with the SPICAV/SOIR instrument. SOIR is a new type of spectrometer used for solar occultations in the range 2.2-4.3 μm. Thanks to a high spectral resolving power R∼15,000-20,000 (unprecedented in planetary space exploration), a new gaseous absorption band was soon detected in the atmospheric transmission spectra around 2982 cm−1, showing a structure resembling an unresolved Q branch and a number of isolated lines with a regular wave number pattern. This absorption could not be matched to any species contained in HITRAN or GEISA databases, but was found very similar to an absorption pattern observed by a US team in the spectrum of solar light reflected by the ground of Mars [Villanueva, G.L., Mumma, M.J., Novak, R.E., Hewagama, T., 2008. Icarus 195 (1), 34-44]. This team then suggested to us that the absorption was due to an uncatalogued transition of the 16O12C18O molecule. The possible existence of this band was soon confirmed from theoretical considerations by Perevalov and Tashkun. Some SOIR observations of the atmospheric transmission are presented around 2982 cm−1, and rough calculations of line strengths of the Q branch are produced, based on the isotopic ratio measured earlier in the lower atmosphere of Venus. This discovery emphasizes the role of isotopologues of CO2 (as well as H2O and HDO) as important greenhouse gases in the atmosphere of Venus.  相似文献   

2.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   

3.
《Planetary and Space Science》2007,55(12):1673-1700
Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft.A UV spectrometer (118–320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, γ and δ bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO2, temperature, SO2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (∼60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere.The SPICAV VIS-IR sensor (0.7–1.7 μm, resolution 0.5–1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H2O, CO2, and aerosols.The SOIR spectrometer is a new solar occultation IR spectrometer in the range λ=2.2–4.3 μm, with a spectral resolution λλ>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.  相似文献   

4.
We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R  2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (?6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173–183) using VEX/SPICAV (R  1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508–511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R  200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.  相似文献   

5.
New measurements of sulfur dioxide (SO2) and monoxide (SO) in the atmosphere of Venus by SPICAV/SOIR instrument onboard Venus Express orbiter provide ample statistics to study the behavior of these gases above Venus’ clouds. The instrument (a set of three spectrometers) is capable to sound atmospheric structure above the clouds in several observation modes (nadir, solar and stellar occultations) either in the UV or in the near IR spectral ranges. We present the results from solar occultations in the absorption ranges of SO2 (190–230 nm, and at 4 μm) and SO (190–230 nm). The dioxide was detected by the SOIR spectrometer at the altitudes of 65–80 km in the IR and by the SPICAV spectrometer at 85–105 km in the UV. The monoxide’s absorption was measured only by SPICAV at 85–105 km. We analyzed 39 sessions of solar occultation, where boresights of both spectrometers are oriented identically, to provide complete vertical profiling of SO2 of the Venus’ mesosphere (65–105 km). Here we report the first firm detection and measurements of two SO2 layers. In the lower layer SO2 mixing ratio is within 0.02–0.5 ppmv. The upper layer, also conceivable from microwave measurements by Sandor et al. (Sandor, B.J., Todd Clancy, R., Moriarty-Schieven, G., Mills, F.P. [2010]. Icarus 208, 49–60) is characterized by SO2 increasing with the altitude from 0.05 to 2 ppmv, and the [SO2]/[SO] ratio varying from 1 to 5. The presence of the high-altitude SOx species could be explained by H2SO4 photodissociation under somewhat warmer temperature conditions in Venus mesosphere. At 90–100 km the content of the sulfur dioxide correlates with temperature increasing from 0.1 ppmv at 165–170 K to 0.5–1 ppmv at 190–192 K. It supports the hypothesis of SO2 production by the evaporation of H2SO4 from droplets and its subsequent photolysis at around 100 km.  相似文献   

6.
Asteroid 2201 Oljato passed through perihelion inside the orbit of Venus near the time of its conjunction with Venus in 1980, 1983, and 1986. During those three years, many interplanetary field enhancements (IFEs) were observed by the Pioneer Venus Orbiter (PVO) in the longitude sector where the orbit of Oljato lies inside Venus' orbit. We attribute IFEs to clouds of fine‐scale, possibly highly charged dust picked up by the solar wind after an interplanetary collision between objects in the diameter range of 10–1000 m. We interpret the increase rate in IFEs at PVO in these years as due to material in Oljato's orbit colliding with material in, or near to, Venus' orbital plane and producing a dust‐anchored structure in the interplanetary magnetic field. In March 2012, almost 30 yr later, with Venus Express (VEX) now in orbit, the Oljato‐Venus geometry is similar to the one in 1980. Here, we compare IFEs detected by VEX and PVO using the same IFE identification criteria. We find an evolution with time of the IFE rate. In contrast to the results in the 1980s, the recent VEX observations reveal that at solar longitudes in which the Oljato orbit is inside that of Venus, the IFE rate is reduced to the level even below the rate seen at solar longitudes where Oljato's orbit is outside that of Venus. This observation implies that Oljato not only lost its co‐orbiting material but also disrupted the “target material,” with which the co‐orbiting material was colliding, near Venus.  相似文献   

7.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

8.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

9.
In December 2006, a single active region produced a series of proton solar flares, with X-ray class up to the X9.0 level, starting on 5 December 2006 at 10:35 UT. A feature of this X9.0 flare is that associated MeV particles were observed at Venus and Mars by Venus Express (VEX) and Mars Express (MEX), which were ∼80° and ∼125° east of the flare site, respectively, in addition to the Earth, which was ∼79° west of the flare site. On December 5, 2006, the plasma instruments ASPERA-3 and ASPERA-4 on board MEX and VEX detected a large enhancement in their respective background count levels. This is a typical signature of solar energetic particle (SEP) events, i.e., intensive MeV particle fluxes. The timings of these enhancements were consistent with the estimated field-aligned travel time of particles associated with the X9.0 flare that followed the Parker spiral to reach Venus and Mars. Coronal mass ejection (CME) signatures that might be related to the proton flare were twice identified at Venus within <43 and <67 h after the flare. Although these CMEs did not necessarily originate from the X9.0 flare on December 5, 2006, they most likely originated from the same active region because these characteristics are very similar to flare-associated CMEs observed on the Earth. These observations indicate that CME and flare activities on the invisible side of the Sun may affect terrestrial space weather as a result of traveling more than 90° in both azimuthal directions in the heliosphere. We would also like to emphasize that during the SEP activity, MEX data indicate an approximately one-order of magnitude enhancement in the heavy ion outflow flux from the Martian atmosphere. This is the first observation of the increase of escaping ion flux from Martian atmosphere during an intensive SEP event. This suggests that the solar EUV flux levels significantly affect the atmospheric loss from unmagnetized planets.  相似文献   

10.
The Venus mesosphere constitutes a highly variable transition region between the zonal rotation of the lower atmosphere and the diurnal circulation of the upper atmosphere. It further serves as the primary photochemical region of the Venus atmosphere. We obtained James Clerk Maxwell Telescope (JCMT, Mauna Kea Hawaii) sub-millimeter line observations of mesospheric 12CO and 13CO during coordinated space (MESSENGER and Venus Express) and ground-based observations of Venus in June of 2007. Such CO spectra line measurements support temperature, CO mixing ratio, and wind retrievals over the 80-110 km altitude range, encompassing the upper mesosphere and lower thermosphere of Venus. Five-point beam integrations were obtained across the observed Venus disk, allowing distinction of afternoon (noon to 6 p.m.) versus evening (6 p.m. to midnight) local times and northern (0-60N) versus southern (0-60S) latitudes. Distinctive diurnal variations (noon to midnight) are retrieved for both temperatures above 95 km and CO mixing ratios above 85 km altitudes. Separate CO line maps obtained on (UT) June 2, 3, 6, and 11 indicate moderate daily variability in afternoon and evening CO mixing ratios (20-50%) and temperatures (5-10 K). Average Venus mesospheric temperatures over this period were 10 K warmer than returned from 1978 to 1979 Pioneer Venus or 2000-01 sub-millimeter measurements, without evidence for the very large temperature inversions indicated by Venus Express SPICAV measurements at 90-100 km altitudes (Bertaux, J.L., Vandaele, A.-C., Korablev, O., Villard, E., Fedorova, A., Fussen, D., Quémerais, E., Belyaev, D., Mahieux, A., Montmessin, F., Muller, C., Neefs, E., Nevejans, D., Wilquet, V., Dubois, J.P. Hauchecorne, A., Stepanov, A., Vinogradov, I., Rodin, A., Bertaux, J.-L., Nevejans, D., Korablev, O., Montmessin, F., Vandaele, A.-C., Fedorova, A., Cabane, M., Chassefière, E., Chaufray, J.Y., Dimarellis, E., Dubois, J.P., Hauchecorne, A., Leblanc, F., Lefèvre, F., Rannou, P., Quémerais, E., Villard, E., Fussen, D., Muller, C., Neefs, E., Van Ransbeeck, E., Wilquet, V., Rodin, A., Stepanov, A., Vinogradov, I., Zasova, L., Forget, F., Lebonnois, S., Titov, D., Rafkin, S., Durry, G., Gérard, J.C., Sandel, B., 2007. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646-649). Measured Doppler shifts associated with June 2 and 11 12CO line center absorptions indicate nearly supersonic (200 m/s, Mach 1) afternoon-to-evening (retrograde) circulation; composed of additive subsolar-to-antisolar (SSAS) and zonal retrograde wind components, which are not separable due to the particular observational geometry.  相似文献   

11.
《Planetary and Space Science》2006,54(13-14):1298-1314
The planetary fourier spectrometer (PFS) for the Venus Express mission is an infrared spectrometer optimized for atmospheric studies. This instrument has a short wavelength (SW) channel that covers the spectral range from 1700 to 11400 cm−1 (0.9–5.5 μm) and a long wavelength (LW) channel that covers 250–1700 cm−1 (5.5–45 μm). Both channels have a uniform spectral resolution of 1.3 cm−1. The instrument field of view FOV is about 1.6 ° (FWHM) for the short wavelength channel and 2.8 ° for the LW channel which corresponds to a spatial resolution of 7 and 12 km when Venus is observed from an altitude of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmospheric properties but also surface properties (temperature) and the surface-atmosphere interaction (volcanic activity).PFS works primarily around the pericentre of the orbit, only occasionally observing Venus from larger distances. Each measurements takes 4.5 s, with a repetition time of 11.5 s. By working roughly 1.5 h around pericentre, a total of 460 measurements per orbit will be acquired plus 60 for calibrations. PFS is able to take measurements at all local times, enabling the retrieval of atmospheric vertical temperature profiles on both the day and the night side.The PFS measures a host of atmospheric and surface phenomena on Venus. These include the:(1) thermal surface flux at several wavelengths near 1 μm, with concurrent constraints on surface temperature and emissivity (indicative of composition); (2) the abundances of several highly-diagnostic trace molecular species; (3) atmospheric temperatures from 55 to 100 km altitude; (4) cloud opacities and cloud-tracked winds in the lower-level cloud layers near 50-km altitudes; (5) cloud top pressures of the uppermost haze/cloud region near 70–80 km altitude; and (6) oxygen airglow near the 100 km level. All of these will be observed repeatedly during the 500-day nominal mission of Venus Express to yield an increased understanding of meteorological, dynamical, photochemical, and thermo-chemical processes in the Venus atmosphere. Additionally, PFS will search for and characterize current volcanic activity through spatial and temporal anomalies in both the surface thermal flux and the abundances of volcanic trace species in the lower atmosphere.Measurement of the 15 μm CO2 band is very important. Its profile gives, by means of a complex temperature profile retrieval technique, the vertical pressure-temperature relation, basis of the global atmospheric study.PFS is made of four modules called O, E, P and S being, respectively, the interferometer and proximity electronics, the digital control unit, the power supply and the pointing device.  相似文献   

12.
The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (~200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (~80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.  相似文献   

13.
14.
Measurements of water vapor in the atmospheres of Venus or Mars by spectroscopic techniques in the infrared range are being made routinely by instruments onboard the Venus Express and the Mars Reconnaissance Orbiter. The interpretation of these measurements in the 2250-4450 cm−1 region is being complicated by the presence of HDO lines absorbing radiation in this region. These spectra cannot be modeled properly because line shape parameters for CO2 broadening (principal gas in these atmospheres) of HDO are not available. Here semi-classical line shape calculations for the HDO-CO2 collision system are made using the Robert-Bonamy formalism for some 2300 rotational band transitions of HDO. From these calculations, the half-width, its temperature dependence, and the line shift are determined to aid in the reduction of the measured spectra. These data will greatly reduce the uncertainty of the reduced profiles from the Venus and Mars measurements and will also allow better estimates of the D/H ratio on these planets.  相似文献   

15.
Hydroxyl nightglow is intensively studied in the Earth atmosphere, due to its coupling to the ozone cycle. Recently, it was detected for the first time also in the Venus atmosphere, thanks to the VIRTIS-Venus Express observations. The main Δν=1, 2 emissions in the infrared spectral range, centred, respectively, at 2.81 and 1.46 μm (which correspond to the (1-0) and (2-0) transitions, respectively), were observed in limb geometry (Piccioni et al., 2008) with a mean emission rate of 880±90 and 100±40 kR (1R=106 photon cm−2 s−1 (4πster)−1), respectively, integrated along the line of sight. In this investigation, the Bates-Nicolet chemical reaction is reported to be the most probable mechanism for OH production on Venus, as in the case of Earth, but HO2 and O may still be not negligible as mechanism of production for OH, differently than Earth. The nightglow emission from OH provides a method to quantify O3, HO2, H and O, and to infer the mechanism of transport of the key species involved in the production. Very recently, an ozone layer was detected in the upper atmosphere of Venus by the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument onboard Venus Express (Montmessin et al., 2009); this discovery enhances the importance of ozone to the OH production in the upper atmosphere of Venus through the Bates-Nicolet mechanism. On Venus, OH airglow is observed only in the night side and no evidence has been found whether a similar emission exists also in the day side. On Mars it is expected to exist both on the day and night sides of the planet, because of the presence of ozone, though OH airglow has not yet been detected.In this paper, we review and compare the OH nightglow on Venus and Earth. The case of Mars is also briefly discussed for the sake of completeness. Similarities from a chemical and a dynamical point of view are listed, though visible OH emissions on Earth and IR OH emissions on Venus are compared.  相似文献   

16.
17.
A model has been developed for the currents induced in the ionospheres of Venus and Mars by the flowing magnetized solar wind in a previous paper (Cloutier and Daniell, 1973). The altitudes of the ionopauses on both planets, determined from the electrodynamical models of the previous paper, are used here to calculate the total rates of atmospheric mass loss to the solar wind for Venus and Mars. These loss rates are compared to the rates calculated by Michel (1971) based upon the limit of mass loading of the solar wind flow determined from hydrodynamic constraints. The distributions of planetary ions in the downstream wakes of Venus and Mars are calculated, and the interpretation of ion spectrometer measurements from close planetary encounters is discussed.  相似文献   

18.
In January of 1982 we measured a microwave spectrum of CO in the Martian atmosphere utilizing the rotational J = 1 → 2 transition of CO. We have analyzed data and reanalyzed the microwave spectra of R. K. Kakar, J. W. Waters, and W. J. Wilson, (Science196, 1090–1091, 1977, measured in 1975) and J. C. Good and F. P. Schloerb, (Icarus47, 166–172, 1981 measured in 1980) in order to constrain estimates of the temporal variability of CO abundance in the Martian atmosphere. Our values of CO column density from the data of Karar et al., Good and Schloerb, and our own are 1.7 ± 0.9 × 1020, 3.0 ± 1.0 × 1020, and 4.6 ± 2.0 × 1020cm?2, respectively. The most recent estimate of CO column density from the 1967 infrared spectra of J. Connes, P. Connes, and J.P. Maillard, (Atlas de Spectres Infarouges de Venus, Mars, Jupiter, et Saturne, Editions due Centre National de la Recherche Scientifique, Paris, 1969), is 2.0 ± 0.8 × 1020 cm?2 (L.D.G. Young and A.T. Young, Icarus30, 75–79, 1977). The large uncertainties given for the microwave measurements are due primarily to uncertainty in the difference between the continuum brightness temperature and atmospheric temperatures of Mars. We have accurately calculated the variation among the observations of the continuum (surface) brightness temperature of Mars, which is primaroly a function of the observed aspect of Mars. A more difficult problem to consider is variability of global atmospheric temperatures among the observations, particularly the effects of global dust storms and the ellipticity of the orbit of Mars. The large bars accompanying our estimates of CO column density from the three sets of microwave measurements are primarily caused by an assumed uncertainty of ±10°K in our atmospheric temperature model due to possible dust in the atmosphere. A qualitative consideration of seasonal variability of global atmospheric temperatures among the measurements suggests that there is not strong evidence for variability of the column abundance of CO on Mars, although variability of 0–100% over a time scale of several years is allowed by the data set. The implication for the variability of Mars O2 is, crudely, a factor of two less. We found that the altitude distribution of CO in the atmosphere of Mars was not well constrained by any of the spectra, although our spectrum was marginally better fitted by an altitude increasing profile of CO mixing ratios.  相似文献   

19.
The results of a study on the binary HIP 18856 and construction of its orbit are presented.New observational data were obtained at the BTA of SAO RAS in 2007-2019.Earlier,Cvetkovic et al.constructed the orbit for this system.However,it is based on six measurements,which cover a small part of the orbit.The positional parameters of the ESA astrometric satellite Hipparcos published speckle interferometric data(Mason et al.,Balega et al.,Horch et al.)and new ones were used in this study.Based on the new orbital parameters,the mass sum was calculated and the physical parameters of the components were found.The obtained orbital and fundamental parameters were compared with the data from the study by Cvetkovic et al..The comparison shows that the new orbital solution is better than the old one,since it fits new observational data accurately.Also based on a qualitative evaluation performed by Worley&Heintz,the new orbit was classified as"reliable",which means data cover more than half of the orbit with sufficient quantities of residuals of measurements.  相似文献   

20.
The LIDAR instrument operating from the surface of Mars on the Phoenix Mission measured vertical profiles of atmospheric dust and water ice clouds at temperatures around −65 °C. An equivalent lidar system was utilized for measurements in the atmosphere of Earth where dust and cloud conditions are similar to Mars. Coordinated aircraft in situ sampling provided a verification of lidar measurement and analysis methods and also insight for interpretation of lidar derived optical parameters in terms of the dust and cloud microphysical properties. It was found that the vertical distribution of airborne dust above the Australian desert is quite similar to what is observed in the planetary boundary layer above Mars. Comparison with the in situ sampling is used to demonstrate how the lidar derived optical extinction coefficient is related to the dust particle size distribution. The lidar measurement placed a constraint on the model size distribution that has been used for Mars. Airborne lidar measurements were also conducted to study cirrus clouds that form in the Earth’s atmosphere at a similar temperature and humidity as the clouds observed with the lidar on Mars. Comparison with the in situ sampling provides a method to derive the cloud ice water content (IWC) from the Mars lidar measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号