首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methane clathrate hydrate reservoirs capped by overlying permafrost have been proposed as potential sources of atmospheric methane plumes on Mars. However, the surface flux of methane from hydrate dissociation is limited by the diffusion rate of methane through the overlying ice. Assuming hydrates underlay the entire plume footprint, the maximum diffusion path length is expected to be less than 15 m, depths too shallow to stabilize pure methane hydrates under Mars geothermal and lithostatic conditions at low to mid latitudes. Therefore, pure methane hydrates confined within permafrost could not produce methane surface fluxes of the magnitude observed near the equator. However, the addition of 10% H2S, a secondary gas commonly associated with methane production on Earth, expands the hydrate stability field, with clathrates expected within 10 m of the surface at the equator and at depths less than 1 m at higher latitudes. This indicates that H2S would also be expected to be released as well as methane if the plumes have a confined hydrate reservoir source.  相似文献   

2.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

3.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

4.
We observed the products C4H5, C4H4, C3H3 and CH3 of the C(3P) + C3H6 reaction using product time-of-flight spectroscopy and selective photoionization. The identified species arise from the product channels C4H5 + H, C4H4 + 2H and C3H3 + CH3. Product isomers were identified via measurements of photoionization spectra and calculations of adiabatic ionization energy. Product C4H5 probably involves three isomers HCCCHCH3, H2CCCCH3 and H2CCCHCH2. In contrast, products C4H4 and C3H3 involve exclusively HCCCHCH2 and H2CCCH, respectively. Reaction mechanisms are unraveled with crossed-beam experiments and quantum-chemical calculations. The 3P carbon atom attacks the π orbital of propene (C3H6) to form a cyclic complex c-H2C(C)CHCH3 that rapidly opens the ring to form H2CCCHCH3 followed by decomposition to HCCCHCH3/H2CCCCH3/H2CCCHCH2 + H and H2CCCH + CH3; the corresponding branching ratios are 7:5:10:78 predicted with RRKM calculations at collision energy 4 kcal mol?1. Nascent C4H5 with enough internal energy further decomposes to HCCCHCH2 + H. Ratios of products C4H5, C4H4 and C3H3 are experimentally evaluated to be 17:8:75. This work provides a comprehensive look at product channels of the title reaction and gives implications for the formation of hydrocarbons in extra-terrestrial environments such as Titan and carbon-rich interstellar media. We suggest that the title reaction, hitherto excluded in any chemical networks, needs to be taken into account at least in the atmosphere of Titan and carbon-rich molecular clouds where rapid neutral–neutral reactions are dominant and carbon atoms and propene are abundant.  相似文献   

5.
6.
It has been suggested that the present release rate of methane to the Martian atmosphere could be the result of serpentinization in the deep subsurface, followed by the conversion of H2 to CH4 in a CO2-rich fluid. Making this assumption, we show that the cryosphere could act as a buffer storing, under the form of micron-size methane clathrate particles, the methane delivered from below by hydrothermal fluids and progressively releasing it to the atmosphere at the top. From an extrapolation of the present CH4 release rate back to the past, we calculate that up to several hundred millibars (~200–2000 mbar) of CO2, resulting from the oxidation of the released CH4, in addition to the volcanic supply (~400 mbar), should have accumulated in the atmosphere in the absence of a CO2 sink. We reassess the capability of escape to have removed CO2 from the atmosphere by C non-thermal escape and show that it is not significant. We suggest that atmospheric carbon is recycled to the crust through an active subsurface hydrological system, and precipitates as carbonates within the crust. During episodic periods of magmatic activity, these carbonates are decomposed to CO2 dissolved in running water, and CO2 can react with H2 formed by serpentinization to build CH4. CH4 is then buffered in the subsurface cryosphere, above the water table, and finally released to the atmosphere, before being recycled to the subsurface hydrological system, and converted back to carbonates. We propose a typical evolution curve of the CO2 pressure since the late Noachian based on our hypothesis. Contrary to the steady state carbon cycle at work on Earth, a progressive damping of the carbon cycle occurs on Mars due to the absence of plate tectonics and the progressive cooling of the planet.  相似文献   

7.
We present spectral and spatial information for major volatile species in Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT 2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62 AU), following the comet’s perihelion passage on UT 2010 July 04. The total production rate for water on July 26 was (1.90 ± 0.12) × 1028 molecules s?1, and abundances of six trace gases (relative to water) were: CH3OH (1.58% ± 0.23%), C2H6 (0.39% ± 0.04%), NH3 (0.83% ± 0.20%), and HCN (0.13% ± 0.02%). A detailed analysis of intensities for water emission lines provided a rotational temperature of 35 ± 3 K. The mean OPR is consistent with nuclear spin populations in statistical equilibrium (OPR = 3.01 ± 0.18), and the (1σ) lower bound corresponds to a spin temperature >38 K. Our measurements were contemporaneous with a jet-like feature observed at optical wavelengths. The spatial profiles of four primary volatiles display strong enhancements in the jet direction, which favors release from a localized vent on the nucleus. The measured IR continuum is much more sharply peaked and is consistent with a dominant contribution from the nucleus itself. The peak intensities for H2O, CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the possible existence of a distributed source, such as the release of icy grains that subsequently sublimed in the coma. On UT September 18, no obvious emission lines were present in our spectra, nevertheless we obtained a 3σ upper limit Q(H2O) < 2.86 × 1027 molecules s?1.  相似文献   

8.
The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m?2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m?2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ~0.05 kg m?2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (~10?3 W m?2). If the amount of atmospheric ethane is less than 0.6×10?5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m?2, then the liquid lifetime increases to ~56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10?5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10?5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.  相似文献   

9.
This work deals with the optical constant characterization of Titan aerosol analogues or “tholins” produced with the PAMPRE experimental setup and deposited as thin films onto a silicon substrate. Tholins were produced in different N2–CH4 gaseous mixtures to study the effect of the initial methane concentration on their optical constants. The real (n) and imaginary (k) parts of the complex refractive index were determined using the spectroscopic ellipsometry technique in the 370–1000 nm wavelength range. We found that optical constants depend strongly on the methane concentrations of the gas phase in which tholins are produced: imaginary optical index (k) decreases with initial CH4 concentration from 2.3 × 10?2 down to 2.7 × 10?3 at 1000 nm wavelength, while the real optical index (n) increases from 1.48 up to 1.58 at 1000 nm wavelength. The larger absorption in the visible range of tholins produced at lower methane percentage is explained by an increase of the secondary and primary amines signature in the mid-IR absorption. Comparison with results of other tholins and data from Titan observations are presented. We found an agreement between our values obtained with 10% methane concentration, and Imanaka et al. (Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., Zare, R.N. [2004]. Icarus, 168, 344–366) values, in spite of the difference in the analytical method. This confirms a reliability of the optical properties of tholins prepared with various setups but with similar plasma conditions. Our comparison with Titan’s observations also raises a possible inconsistency between the mid-IR aerosol signature by VIMS and CIRS Cassini instruments and the visible Huygens-DISR derived data. The mid-IR VIMS and CIRS signatures are in agreement with an aerosol dominated by an aliphatic carbon content, whereas the important visible absorption derived from the DISR measurement seems to be incompatible with such an important aliphatic content, but more compatible with an amine-rich aerosol.  相似文献   

10.
《Planetary and Space Science》2007,55(9):1050-1057
The ESA Rosetta Spacecraft, launched on March 2, 2004 with the ultimate destination being Comet 67P/Churyumov–Gerasimenko, carries a relatively small and lightweight millimeter–submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument, named Microwave Instrument for the Rosetta Orbiter (MIRO), consists of a 30-cm diameter, offset parabolic reflector telescope, which couples energy in the millimeter and submillimeter bands to two heterodyne receivers. Center-band operating frequencies are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband, total power continuum measurements can be made in both bands. A 4096-channel spectrometer with 44 kHz resolution is connected to the submillimeter receiver. The spectral resolution is sufficient to observe individual, thermally broadened spectral lines (T⩾10 K). The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species—CO, CH3OH, NH3 and three isotopes of water, H216O, H217O and H218O. The MIRO experiment will use these species as probes of the physical conditions within the nucleus and coma. The basic quantities measured by MIRO are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This information will be used to infer coma structure and outgassing processes, including the nature of the nucleus/coma interface.  相似文献   

11.
《New Astronomy》2007,12(6):461-470
We present results of a study that combines UBVI photometry, MK spectral classification and proper motions in the area of the, up to now unknown, open cluster Ruprecht 58 at the Puppis region. Star counts from the 2MASS data catalog together with the analysis of CCD UBVI photometry demonstrate that it is a real open cluster with 9′ size approximately. The cluster is placed at a distance of 3.9 kpc and is about 250 Myr old with mean reddening E(BV) = 0.33 mag. Proper motions confirm Ruprecht 58 is a real cluster with mean absolute proper motions μαcosδ = −2.77 ± 0.45 mas/yr and μδ = 4.54 ± 0.45 mas/yr in the magnitude range 13.5 < V < 14.5 and μαcosδ = −2.70 ± 0.32 mas/yr and μδ = 3.19 ± 0.32 mas/yr in the range 14.5 < V < 16.0. The computation of the cluster mass spectrum slope yielded x = 1.8 in the mass range from ≈1.4 to ≈4m.  相似文献   

12.
We present a multicolor photometry for the eclipsing binary WY Hydrae, observed on four nights of 2008 December. From our new observations and Carr’s data, the photometric solutions were deduced by using the updated W–D program. The results show that WY Hya is a detached binary with a mass ratio of q = 0.970(±0.005).By analyzing the OC curve, it is found that there exists either a continuous period increase or a cyclic variation. From Eq. (2), the orbital period of WY Hya secularly increases at a rate of dP/dt = +3.56(±0.37) × 10?7 days/yr, which may be interpreted by some mass transfer for the near-contact configuration or tidal dissipation. From Eq. (3), the period and semi-amplitude of the periodic oscillation are P3 = 95.4(±4.2) yr and A = 0d.0087(±0d.0003), respectively. This may be likely attributed by light-time effect via the presence of the assumed third body. Assumed in the coplanar orbit with the binary, the mass of the third body should be M3 = 0.18 M. If the unseen additional companion exists, it will extract angular momentum from the binary system. Finally, WY Hya with high fill-out factors (i.e., f1,2 > 80%), may evolve into a semi-detached configuration.  相似文献   

13.
In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1–3 AU, and 5–12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ~10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2–C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ~104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the “wetted layer” model is the prediction that diurnal melt–freeze cycles alter the mixing ratio vs. depth of solutes present, or of other miscible components, largely through a process of fractional crystallization, but also potentially involving frost heave. Wetted layers are potentially durable and can involve significant mass transport of volatile materials in the near-surface, increasing in extent over many rotations of the nucleus prior to and just after perihelion passage, and causing stratification and trapping of the lowest-melting mixtures at depths of several metres. A possible mechanism for cometary outbursts is proposed involving a heat pulse reaching the liquid phase in the deepest wetted zone, leading to supersaturation and triggering the sudden release under pressure of dissolved gases, in particular CO2, CO, CH4 or N2, contained beneath a consolidated near-surface layer. This study indicates that liquid water can persist for long periods of time in the near-surface of some intermediate-sized bodies (102–103 km radius) within protoplanetary discs.  相似文献   

14.
《Planetary and Space Science》2007,55(10):1328-1345
The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm.The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures.A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V.Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap.These results should provide new, useful constraints in models of the Martian climate system and volatile cycles.  相似文献   

15.
Rapid temporal variability of SO2 and SO in the Venus 85–100 km mesosphere (Sandor, B.J., Clancy, R.T., Moriarty-Schieven G.H. [2007]. Bull. Am. Astron. Soc. 39, 503; Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60) requires in situ sources and sinks for these molecules. While many loss mechanisms are recognized, no process for in situ production is known. Observational investigations to find, or constrain other potential sulfur reservoirs offer one method toward understanding the applicable photochemistry. Here, we report upper limits for gas-phase H2SO4 (sulfuric acid) abundances in Venus’ 85–100 km upper mesosphere, derived from 16 ground-based sub-mm spectroscopic observations in the period 2004–2008. Unlike the ubiquitous sulfuric acid solid/liquid aerosol, the gas phase would be photochemically active, potentially both source and sink for SO and SO2. H2SO4 is retrieved from sub-mm lines located in the same bandpass as the SO2 and SO lines described by Sandor et al. (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60). H2SO4 upper limits reported here are thus simultaneous and spatially coincident with measurements of SO2 and SO, providing for analysis of the three sulfur species collectively. The average H2SO4 abundance over 16 observations is 1 ± 2 ppb (i.e. <3 ppb). Upper limits for individual observations range from 3 to 44 ppb, where quality of the observing weather is the dominant constraint on measurement precision. The sum of H2SO4, SO2 and SO varies widely. In one comparison, the sum [H2SO4 + SO2 + SO] measured on one date differs by 10-σ from the sum measured 2 months later. We conclude that upper mesospheric sulfur atoms are not conserved among the three molecules, that H2SO4 is not a significant sulfur reservoir for balancing the observed variations of [SO2 + SO], and is not relevant to the (still unknown) photochemistry responsible for observed behavior of SO2 and SO. Having ruled out H2SO4, we infer that elemental sulfur is the most probable candidate for the needed third reservoir.  相似文献   

16.
The modeling of UV and optical spectra emitted from the symbiotic system AG Dra, adopting collision of the winds, predicts soft X-ray bremsstrahlung from nebulae downstream of the reverse shock with velocities > 150 km s?1 and intensities comparable to those of the WD black body flux. At outbursts, the envelop of debris, which corresponds to the nebula downstream of the high velocity shocks (700–1000 km s?1) accompanying the blast wave, absorbs the black body soft X-ray flux from the WD, explains the broad component of the H and He lines, and leads to low optical-UV–X-ray continuum fluxes. The high optical-UV flux observed at the outbursts is explained by bremsstrahlung downstream of the reverse shock between the stars. The depletion of C, N, O, and Mg relative to H indicates that they are trapped into dust grains and/or into diatomic molecules, suggesting that the collision of the wind from the WD with the dusty shells, ejected from the RG with a ~1 year periodicity, leads to the U-band fluctuations during the major bursts.  相似文献   

17.
CH4 has been observed on Mars both by remote sensing and in situ during the past 15 yr. It could have been produced by early Mars serpentinization processes that could also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. The maximum storage capacity of such a clathrate cryosphere has been recently estimated to be 2 × 1019 to 2 × 1020 moles of methane. We estimate how large amounts of serpentinization‐derived CH4 stored in the cryosphere have been released into the atmosphere during the Noachian and the early Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H2, these episodes of massive CH4 release may have resulted in transient H2‐rich atmospheres, at typical levels of 10–20% in a background 1–2 bar CO2 atmosphere. The collision‐induced heating effect of H2 present in such an atmosphere has been shown to raise the surface temperature above the water freezing point. We show how local and rapid destabilization of the cryosphere can be induced by large events (such as the Hellas Basin or Tharsis bulge formation) and lead to such releases. Our results show that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H2‐rich transient atmospheres during a total time period up to several million years or tens of million years, having potentially contributed to the formation of valley networks during the Noachian/early Hesperian.  相似文献   

18.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

19.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

20.
We present the two-dimensional distribution of the O2 a1Δ–X3Σ (0–0) band at 1.27 μm and the OH Δv = 1 Meinel airglow measured simultaneously with the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board Venus Express. We show that the two emissions present very similar spatial structures. A cross-correlation analysis indicates that the highest level of correlation is reached with only very small relative shifts of the pairs of images. In spite of the strong spatial correlation between the morphology of the bright spots in the two emissions, we also show that their relative intensity is not constant, in agreement with earlier statistical studies of their limb profiles. We conclude that the two emissions have a common precursor that controls the production of both excited species. We argue that atomic oxygen, which produces O2 (1Δ) molecules by three-body recombination and is the precursor of ozone formation, also governs to a large extent the OH airglow morphology through the H + O3  OH* + O2 reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号