首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
从历史-因果论的角度,对亚洲大陆中部的演化-运动史,及其大地构造体制发展阶段的地质构造和成矿作用,进行了系统的阐述,重点阐述了东、西部构造差异的历史-动力学表现及其原因。研究表明:这种差异并非两个不同大陆壳体演化-运动上的差异造成,而是在同一大陆壳体形成与平向增生进程中东早西晚的历史背景条件下,由于东部与西部中生代、新生代陆内深部地幔热能聚集增强的上升流与热能发散衰减的下降流,共同组成的垂向热流环发生反转变化造成的结果,并得出了主导亚洲大陆中部东、西构造分异的主动性因素是陆内地幔热能聚散动力学机制的结论。同时指出,中新生代出现在亚洲大陆中部的东、西构造分异,是同一大陆壳体即东-中亚壳体自身历史-动力学构造分异的表现,它是亚洲大陆动力学中,与陆内克拉通活化及活化造山区的出现、青藏高原的隆升、东亚陆缘扩张带的形成并列的 4个重大事件之一,并在这些重大事件的动力学研究中占据关键性的核心地位。  相似文献   

2.
大地构造火成岩岩石学研究   总被引:3,自引:0,他引:3  
王方正  肖龙 《地学前缘》1998,5(4):245-250
大地构造火成岩岩石学是岩石学和大地构造学研究相结合的学科,与传统的研究思路和方法相比,它重视深部地质过程的研究,尤其是大陆动力学的成就。通过深部物质信息(火成岩及包体、中高级变质岩)的研究,反演深部物质组成,为大地构造单元的划分对比提供深部证据;基性超基性构造岩浆带的研究是揭示古构造块体边界、超壳深大断裂的窗口;岩石圈组成的岩石学模型和垂向岩石圈分层界面的研究对于重新认识Moho面、低速层和大陆岩石圈结构意义重大。岩石学探针、同位素地球化学示踪和科学深钻、超深钻是现代大地构造火成岩岩石学研究的主要方法和手段。  相似文献   

3.
亚洲大陆型壳体的活化(地洼)构造与成矿特点   总被引:2,自引:1,他引:1  
亚洲大陆岩石圈自古生代末起,相继在各个壳体发生活化,广泛形成地洼体制活动带,是亚洲大陆岩石围演化一运动史上的重大事件之一,在全球构造问题中占有重要的地位,为当代地球科学中的前沿课题。从壳体大地构造这一新思路分别对地洼体制构造单元在亚洲大陆的发生时代、分布范围、类型、发育特点及其大地构造意义;亚洲大陆地洼构造成矿的地球化学条件、主要矿种组合、主要矿床类型及其与其它大地构造类型的差别;亚洲地洼型成矿作用与多因复成矿床及超大型矿床的关系等诸多方面,进行了专门论述。有助于正确认识亚洲大陆广泛分布的有色、稀有金属内生矿床,以及泥炭、褐煤、油气田的构造类型特点、分布规律及其经济价值。  相似文献   

4.
加里曼丹及邻区壳体的运动与演化   总被引:1,自引:0,他引:1  
加里曼丹岛位于西太平洋东南亚陆缘构造-岩浆活动带,是自中新生代以来地球岩石圈最复杂的构造活动区之一。本文通过对区域地壳的基底及深部构造、地幔流应力场、最大主应力场、大地热流等地球物理特征资料的分析基础上,对加里曼丹岛及邻区的地壳性质与结构、大地构造运动与演化作了较详细的分析。认为东南亚陆缘壳体大致形成于中晚三叠世,同时对加里曼丹地区的大地构造分区进行了划分,讨论了该区大地构造运动-演化特征。  相似文献   

5.
崔维龙  曾振  张兴洲 《地质论评》2019,65(Z1):49-50
正佳木斯地块位于我国黑龙江省东部,大地构造上处于华北和西伯利亚两大古板块所夹持的中亚构造带最东端,东邻西太平洋大陆边缘中生代增生杂岩带。该地块以广泛出露有麻粒岩相高级变质表壳岩系,东缘发育晚古生代大陆边缘沉积层系和早中生代海相沉积地层为特征。早期的研究普遍认为,东北地区以佳木斯地块等为代表的诸变质构造单元是卷入到东亚晚古生代地槽褶皱带或古亚洲  相似文献   

6.
王涛  侯增谦 《地学前缘》2018,25(6):1-19
固体地球科学的一个重要任务是探测地球深部过程与不同圈层协同演变。深部物质探测、地球物理结构探测和深钻一起构成深部探测的三大途径。岩浆岩“探针”及区域同位素(如全岩Nd、锆石Hf)示踪填图是深部物质探测的主要手段,可以用来揭示深部物质组成特征及时空变化,确定不同类型地壳省,划分大地构造边界,估算大陆地壳生长量、方式,分析区域成矿规律。这一技术广泛应用后,有望实现深部结构探测与物质探测结合,开展深部物质填图。中国大陆是深部物质探测的良好实验室,需要解决的重大问题包括:多块体拼合的岩石圈及陆壳深部物质组成架构,不同类型造山带地壳生长与深部物质组成结构,不同构造单元深部物质组成与成矿作用及其浅部成矿制约。文中重点总结和探讨了岩浆岩全岩Sr-Nd同位素和锆石Lu-Hf同位素区域填图以及捕获锆石信息填图的思路、方法和注意的问题,以及可以解决的重大地质问题,并探索性提出今后开展的重点研究方向。  相似文献   

7.
小兴安岭东部地区位于中亚-兴蒙巨型造山带的东段,大地构造位置上处于古亚洲洋构造域和环太平洋中生代构造域的交汇部位,是东北地区发展历史较长、构造岩浆活动较复杂的造山带之一.  相似文献   

8.
大地构造相的定义、划分、特征及其鉴别标志   总被引:15,自引:1,他引:14  
大地构造相是反映陆块区和造山系(带)形成演变过程中,在特定演化阶段、特定构造部位的大地构造环境中,形成的一套岩石-构造组合,是表达大陆岩石圈板块经过离散、聚合碰撞、旋扭等动力学过程而形成的地质构造作用的综合产物,具有恢复与揭示陆块区和造山系(带)的组成、结构、演化与成矿地质背景的功能。根据板块构造理论的基本原理和长期研究中国大陆构造的实践经验,在前人大地构造研究的基础上提出了一个比较系统和详细的大地构造相划分方案。总结了这些大地构造相的基本特征及其鉴别标志,不仅丰富了大陆板块构造研究的内容,而且为区域成矿地质背景和资源预测的研究提供了新的思维和工作方法。大地构造相的鉴别也是厘定大地构造单元属性、划分大地构造演化阶段的重要标志。  相似文献   

9.
新生代以来中国大陆岩石圈尺度的大地构造分区   总被引:6,自引:0,他引:6       下载免费PDF全文
邓晋福  莫宣学 《地球科学》1997,22(3):227-232
基于大陆根柱构造概念,讨论了新生代以来大陆岩石圈尺度的大地构造分枢,地壳浅部主要表现为3种形态,即西部挤压造山带、东部大陆裂谷带和中部克拉通块体群,它们分别对应山根与造山岩石圈根、地幔热柱和大陆(岩石圈)根,认为浅部构造开矿对对壳幔深部构造的一种响应,简述了地于岩石圈度的3个大地构造单元的软流圈  相似文献   

10.
滇西地区壳体大地构造单元的划分及其演化与运动特征   总被引:7,自引:3,他引:4  
以壳体大地构造理论为基础,根据滇西三江地区的基本地质事实,对前人的观点进行重新认识和修正,首次提出了该区迄今最全面、最系统的壳体大地构造单元划分方案,将其细分为4个壳段,11个次级单元和3个挤压聚合带,从新的角度揭示了该区区域地质构造的时空演化规律,为区域成矿规律提供了重要的科学依据。  相似文献   

11.
万晓樵 《地学前缘》2020,27(6):116-127
有孔虫化石资料是地质历史的真实记录,对不同地质时期古地理格局和生态环境的变迁具有动态响应。西藏特提斯构造带的演化、板块相对地理位置变迁等诸多问题一直是地学界关注的热点。研究西藏特提斯沉积盆地内有孔虫动物群的古生态特征和古地理分布,能够识别生物地理区系,进而恢复不同时期的大地构造演化格局。西藏地区中、新生代古生物地理区系的分化是西藏特提斯地质演变的具体反映。西藏南部早侏罗世产底栖大有孔虫Orbitopsella喜暖动物群,晚侏罗世出现双壳类Buchia喜冷动物群。由此推测,侏罗纪新特提斯洋扩张尤其是中大西洋的开张,将位于印度大陆北缘的特提斯喜马拉雅带,从早侏罗世较低纬度的温暖位置向南推移至较高纬度的低温地区。白垩纪中期Orbitolina有孔虫类群繁盛于特提斯北侧亚洲大陆的拉萨地块和羌塘盆地,但没有出现在印度大陆。这说明当时印度大陆已脱离冈瓦纳大陆向北漂移,受四周深水环境的阻隔,Orbitolina动物群未能向印度大陆扩散。此时深水环境中生活着浮游有孔虫Ticinella-Rotalipora动物群。Turonian晚期开始形成海退,拉萨地块的海洋环境基本消失。Coniacian-Campanian早期印度大陆北缘浮游有孔虫继续占优势,繁盛Marginotruncana-Globotruncana动物群。直至白垩纪末,印度和欧亚大陆之间的深海阻隔仍然存在,雅鲁藏布江缝合带两侧动物群一直存在根本性差异。印度大陆北缘发育着Orbitoides-Omphaloceclus 动物群,冈底斯南缘则以Lepidorbitoides-Pseudorbitoides动物群为特征。古新世Danian期生态环境发生变化,显示大印度与亚洲大陆发生初始碰撞(66~61 Ma)。Selandian期之后,缝合带两侧才出现相同的Miscellanea-Daviesina有孔虫类群,生物区系的分异基本结束。始新世早期缝合带两侧为完全相同的生物区系,共同发育底栖大有孔虫Nummulites-Discocyclina动物群。有孔虫古地理证据表明,大印度与欧亚大陆的初始碰撞在古新世早期发生,时间大致在Danian期,沿雅鲁藏布缝合带的深海演变为残留海环境。小个体货币虫Nummulites willcoxi和浮游有孔虫Globigerina ouachitaensis的存在,代表特提斯喜马拉雅最高海相沉积,时代属于始新世Priabonian晚期(35~34 Ma)。随后,特提斯喜马拉雅海封闭,海水完全退出西藏境内。  相似文献   

12.
青藏高原的形成与隆升   总被引:71,自引:4,他引:67  
潘裕生 《地学前缘》1999,6(3):153-163
青藏高原的形成与隆升问题是个十分复杂、倍受地球科学家关注的问题。它被认为是冈瓦纳大陆与欧亚大陆长期相互作用的结果。青藏高原是由6个地体相继增生到亚洲大陆上的一个组合,这些地体之间的边界被5条缝合带所限定。造山作用自北向南相继变年轻。青藏高原是特提斯的主要范畴,它可以分成3个区域,分别代表了3个阶段主洋盆位置。特提斯北区位于昆仑山和祁连山,它的遗迹是第五缝合带,在大陆基底上于震旦纪形成裂谷,奥陶纪闭合。特提斯中区位于可可西里-巴颜喀喇,古生代晚期以来在弧后盆地基础上继续破裂、扩张,典型的洋壳形成于石炭-二叠纪,这个时期的洋称古特提斯,它的遗迹为第三和第四缝合带。特提斯南区位于青藏高原南部,雅鲁藏布江缝合带代表了它的主洋盆遗迹,班公-怒江缝合带代表了它的弧后盆地。青藏高原的隆升以多阶段、非均匀、不等速为特征,大体上可分成4个阶段,即45~38,25~17,13~8和3~0Ma。虽然到目前为止已经提出了多种模式来解释高原的形成与隆升,但是这一问题迄今仍然没有解决。文中笔者根据多年来地质。地球物理和地球化学研究成果和近年来新的实验研究结果,提出了叠加压扁热动力模式来解释青藏高原的形成与隆升机制。  相似文献   

13.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

14.
王二七  孟恺  许光  樊春  苏哲 《岩石学报》2018,34(7):1867-1875
印度陆块与欧亚大陆的碰撞是印度洋扩张和特提斯洋闭合综合作用的结果。本文通过综合分析和研究提出这3个板块的相互作用致使印度陆块发生过2次向北的仰冲:早期(古新世末-始新世初,~57Ma)仰冲受其超高速运动(140mm/yr)的驱动,与特提斯之间产生的速度差致使两者间的边界发生破裂,密度小的印度陆块沿印度洋东经90°海岭和马尔代夫岛链向北仰冲到特提斯洋壳之上,两者的叠加导致印度陆块北缘——特提斯喜马拉雅地壳增厚(~70km)并且沉积了一套造山磨拉石——柳曲砾岩;晚期(渐新世-中新世之交,~25Ma)仰冲发生在碰撞后,由于高喜马拉雅结晶岩系沿主中央冲断带和藏南拆离断裂发生的垂向挤出,位于上盘的特提斯喜马拉雅沉积盖层同时发生重力垮塌,沿大喜马拉雅反冲断裂仰冲到冈底斯岩浆岩带之上并且造成后者的隆升和前陆下陷,其北缘充填了一套造山磨拉石沉积——大竹卡砾岩。这两次构造事件均受印度陆块的快速运动驱动。此外,在印度陆块超高速运动的挤压下,特提斯洋可能在早白垩世之后就停止了扩张,而老的洋壳不是俯冲消减了就是被仰冲的印度陆块掩盖了,这解释了为什么雅鲁藏布江缝合带只存早白垩世蛇绿岩。印度洋内东经90°海岭和马尔代夫岛链构成印度陆块的南东和南西边界,前者呈右行走滑,后者呈左行走滑,两者勾画出印度陆块向北漂移的轨迹。  相似文献   

15.
Southeast Asia comprises collage of continental blocks that were rifted out in phases from the northern parts of the Gondwanic Indo-Australian continent during the Paleozoic-Mesozoic time and were accreted through continental collision process following closure of the Paleo- and Neo-Tethys. The South China and Indo-China blocks were possibly rifted during early Palaeozoic, whereas, the Tibetan and SIBUMASU blocks were rifted during Permo-Carboniferous when the said margin was under glacial and/or cool climatic condition. The Indo-Burma-Andaman (IBA), Sikule, Lolotoi blocks were also rifted from the same Indo-Australian margin but during late Jurassic. This was followed by break-up of the Indian and the Australian continents during early Cretaceous. The opening of the Indian Ocean during the Tertiary was synchronous with closing of the Tethys.India-Asia collision during early-middle Eocene was a mega tectonic event. Apart from initiating the Himalayan orogeny and the eastward strike-slip extrusion of the Indochina block from the Southeast Asian continental collage along the Ailao Shan — Red River shear zone, it also caused early-mid Eocene continental-flood-basalt activity in the Himalayan foreland basin. Indian continent's post-collisional indentation-induced syntaxial buckling of Asian continental collage at its eastern end possibly caused late Paleogene highly potassic magmatism around the Gongha syntaxial area that was located close to the sutured margin of South China continent with Indochina block at the outer fringe of Namche Barwa syntaxis. These magmatic bodies are soon after left-laterally displaced by the Ailao Shan — Red River shear zone. The nature and chemistry of magma at these two settings indicate that both groups result from similar petrogenetic and tectonic processes representing deep-seated melts due to mantle decompression. Some deep faults produced at the edge of flexed Indian continental lithosphere and responsible for the development of the foreland basin may have produced continental-flood-basalt and related magma by decompressional melting of enriched sub-continental mantle. The site-specific location and time sequence of magmatism from the marginal parts of South China continent and located at the outer fringe of Namche Barwa syntaxis are strongly significant. It suggests that these magmatic bodies may also be genetically related to the India-Asia collision process and indentation-induced syntaxial buckling of upper mantle beneath the marginal parts of the South China rigid continent.  相似文献   

16.
为研究青藏高原地壳上地幔深部结构构造特征,近年来开展了大量的宽频地震探测工作。笔者收集了最近十几年来在青藏高原内部及其周缘布设的宽频带临时台网和固定台站情况,综合论述了宽频地震层析成像方法在青藏高原深部结构探测,如地壳低速层、印度岩石圈地幔俯冲、青藏高原北部构造研究中所取得的成果。  相似文献   

17.
中国的全球构造位置和地球动力系统   总被引:8,自引:0,他引:8  
任纪舜  赵磊  徐芹芹  朱俊宾 《地质学报》2016,90(9):2100-2108
现今之中国位于亚洲大陆东南部,西太平洋活动带中段;在全球板块构造图上,中国位于欧亚板块的东南部,南为印度板块,东为太平洋板块和菲律宾海板块。地质历史上,以中朝、扬子、塔里木等小克拉通为标志的中国主体属于冈瓦纳和西伯利亚两个大陆之间的转换(互换)构造域:古生代时期,位于古亚洲洋之南,属冈瓦纳结构复杂的大陆边缘;中生代阶段,位于特提斯之北,属劳亚大陆的一部分。显生宙中国大地构造演化依次受古亚洲洋、特提斯-古太平洋、太平洋-印度洋三大动力体系之控制,形成古亚洲洋、特提斯和太平洋三大构造域。不论古亚洲洋,还是特提斯,都不是结构简单的大洋盆地,而是由一系列海底裂谷带(小洋盆带)和众多微陆块组合而成的结构复杂的洋盆体系。加之中、新生代的太平洋构造域和特提斯构造域叠加在古生代的古亚洲洋构造域之上,使中国地质构造图像在二维平面上呈现镶嵌构造,在三维空间上呈现立交桥式结构,使中国不仅是亚洲,也是全球构造最复杂的一个区域。不同阶段的地球动力体系在中国的叠加、复合,使多旋回构造-岩浆和成矿作用成为中国地质最突出的特征。因而中国的造山带大多是多旋回复合造山带,成矿(区)带大多是多旋回复合成矿(区)带,大型含油气盆地大多是多旋回叠合盆地。  相似文献   

18.
The Himalayan range is one of the best documented continent-collisional belts and provides a natural laboratory for studying subduction processes. High-pressure and ultrahigh-pressure rocks with origins in a variety of protoliths occur in various settings: accretionary wedge, oceanic subduction zone, subducted continental margin and continental collisional zone. Ages and locations of these high-pressure and ultrahigh-pressure rocks along the Himalayan belt allow us to evaluate the evolution of this major convergent zone.

(1) Cretaceous (80–100 Ma) blueschists and possibly amphibolites in the Indus Tsangpo Suture zone represent an accretionary wedge developed during the northward subduction of the Tethys Ocean beneath the Asian margin. Their exhumation occurred during the subduction of the Tethys prior to the collision between the Indian and Asian continents.

(2) Eclogitic rocks with unknown age are reported at one location in the Indus Tsangpo Suture zone, east of the Nanga Parbat syntaxis. They may represent subducted Tethyan oceanic lithosphere.

(3) Ultrahigh-pressure rocks on both sides of the western syntaxis (Kaghan and Tso Morari massifs) formed during the early stage of subduction/exhumation of the Indian northern margin at the time of the Paleocene–Eocene boundary.

(4) Granulitized eclogites in the Lesser Himalaya Sequence in southern Tibet formed during the Paleogene underthrusting of the Indian margin beneath southern Tibet, and were exhumed in the Miocene.

These metamorphic rocks provide important constraints on the geometry and evolution of the India–Asia convergent zone during the closure of the Tethys Ocean. The timing of the ultrahigh-pressure metamorphism in the Tso Morari massif indicates that the initial contact between the Indian and Asian continents likely occurred in the western syntaxis at 57 ± 1 Ma. West of the western syntaxis, the Higher Himalayan Crystallines were thinned. Rocks equivalent to the Lesser Himalayan Sequence are present north of the Main Central Thrust. Moreover, the pressure metamorphism in the Kaghan massif in the western part of the syntaxis took place later, 7 m.y. after the metamorphism in the eastern part, suggesting that the geometry of the initial contact between the Indian and Asian continents was not linear. The northern edge of the Indian continent in the western part was 300 to 350 km farther south than the area east of the Nanga Parbat syntaxis. Such “en baionnette” geometry is probably produced by north-trending transform faults that initially formed during the Late Paleozoic to Cretaceous Gondwana rifting. Farther east in the southern Tibet, the collision occurred before 50.6 ± 0.2 Ma. Finally, high-pressure to ultrahigh-pressure rocks in the western Himalaya formed and exhumed in steep subduction compared to what is now shown in tomographic images and seismologic data.  相似文献   


19.
王志  王剑  付修根 《地质论评》2021,67(1):1-12
青藏高原东缘和扬子西缘的构造带是中国特提斯构造域的重要组成部分,该构造域受欧亚板块与印度板块陆—陆碰撞、高原隆升、块体裂解或拼接挤压等强烈构造活动的影响,记录和保存了多期次的特提斯构造演化历史痕迹。同时,该研究区域也是中国西部地区地壳形变最强烈的地区之一,其浅表形变特征与深部构造之间存在怎样的关联和制约机制是目前国际地球科学的一个研究热点。本研究依据作者十多年来持续在该区域开展的地质—地球物理研究,通过深部地球物理多参数结构成像、沉积盆地分析、地壳形变和强震孕育机制等综合对比分析,发现在青藏高原东缘的下地壳存在低速和高泊松比异常带,该异常体与来自青藏高原上涌的软流圈热物质汇聚,导致从扬子西缘到青藏高原的下地壳和上地幔的深部结构发生显著变化。沿着龙门山断裂带,中、下地壳存在交叠相间的低速(高泊松比)和高速(低泊松比)区域,这些深部结构分布特征与地表形变及前陆盆地隆坳格局具有较好的一致性。基于上述认识,提出了青藏高原东缘—扬子板块的深部接触模式及其相应的盆山耦合关系,阐明了板块碰撞—耦合的深部动力学过程对剧烈地壳形变、盆地隆坳格局和强震诱发的制约关系。本研究成果将为深入认识青藏高原东缘高原急剧隆升、盆地基底结构与隆拗格局,以及强烈地壳形变的深部动力学机制提供参考信息。  相似文献   

20.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号