首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The planar problem of three bodies is described by means of Murnaghan's symmetric variables (the sidesa j of the triangle and an ignorable angle), which directly allow for the elimination of the nodes. Then Lemaitre's regularized variables \(\alpha _j = \sqrt {(\alpha ^2 - \alpha _j )}\) , where \(\alpha ^2 = \tfrac{1}{2}(a_1 + a_2 + a_3 )\) , as well as their canonically conjugated momenta are introduced. By finally applying McGehee's scaling transformation \(\alpha _j = r^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} \tilde \alpha _j\) , wherer 2 is the moment of inertia a system of 7 differential equations (with 2 first integrals) for the 5-dimensional triple collision manifold \(T\) is obtained. Moreover, the zero angular momentum solutions form a 4-dimensional invariant submanifold \(N \subset T\) represented by 6 differential equations with polynomial right-hand sides. The manifold \(N\) is of the topological typeS 2×S 2 with 12 points removed, and it contains all 5 restpoint (each one in 8 copies). The flow on \(T\) is gradient-like with a Lyapounov function stationary in the 40 restpoints. These variables are well suited for numerical studies of planar triple collision.  相似文献   

2.
The well-known Titius-Bode law (T-B) giving distances of planets from the Sun was improved by Basano and Hughes (1979) who found: $$a_n = 0.285 \times 1.523^n ;$$ a n being the semi-major axis expressed in astronomical units, of then-th planet. The integern is equal to 1 for Mercury, 2 for Venus etc. The new law (B-H) is more natural than the (T-B) one, because the valuen=?∞ for Mercury is avoided. Furthermore, it accounts for distances of all planets, including Neptune and Pluto. It is striking to note that this law:
  1. does not depend on physical parameters of planets (mass, density, temperature, spin, number of satellites and their nature etc.).
  2. shows integers suggesting an unknown, obscure wave process in the formation of the solar system.
In this paper, we try to find a formalism accounting for the B-H law. It is based on the turbulence, assumed to be responsible of accretion of matter within the primeval nebula. We consider the function $$\psi ^2 (r,t) = |u^2 (r,t) - u_0^2 |$$ , whereu 2(r, t) stands for the turbulence, i.e., the mean-square deviation velocities of particles at the pointr and the timet; andu 0 2 is the value of turbulence for which the accretion process of matter is optimum. It is obvious that Ψ2(r n,t0) = 0 forr n=0.285×1.523 n at the birth timet 0 of proto-planets. Under these conditions, it is easily found that $$\psi ^2 (r,t_0 ) = \frac{{A^2 }}{r}\sin ^2 [\alpha log r - \Phi (t_0 )]$$ With α=7.47 and Φ(t 0)=217.24 in the CGS system, the above function accounts for the B-H law. Another approach of the problem is made by considering fluctuations of the potentialU(r, t) and of the density of matter ρ(r, t). For very small fluctuations, it may be written down the Poisson equation $$\Delta \tilde U(r,t_0 ) + 4\pi G\tilde \rho (r,t_0 ) = 0$$ , withU(r, t)=U 0(r)+?(r, t 0 ) and \(\tilde \rho (r,t_0 )\) . It suffices to postulate \(\tilde \rho (r,t_0 ) = k[\tilde U(r,t_0 )/r^2 ](k = cte)\) for finding the solution $$\tilde U(r,t_0 ) = \frac{{cte}}{{r^{1/2} }}\cos [a\log r - \zeta (t_0 )]$$ . Fora=14.94 and ζ(t 0)=434.48 in CGS system, the successive maxima of ?(r,t 0) account again for the B-H law. In the last approach we try to write Ψ(r, t) under a wave function form $$\Psi ^2 (r,t) = \frac{{A^2 }}{r}\sin ^2 \left[ {\omega \log \left( {\frac{r}{v} - t} \right)} \right].$$ It is emphasized that all calculations are made under mathematical considerations.  相似文献   

3.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

4.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

5.
New photoelectric UBVRI observations of the eclipsing variable V 1016 Ori have been obtained with the AZT-11 telescope at Crimean Astrophysical Observatory and with the Zeiss-600 telescope at Mount Maidanak Observatory. Light curves are constructed from the new observations and from published and archival data. We use a total of 340, 348, 386, 185, and 62 magnitude estimates in the bands from U to I, respectively. An analysis of these data has yielded the following results. The photometric elements were refined; their new values are $Min I = JDH 2441966.820 + 65\mathop .\limits^d 4331E$ . The UBVRI magnitudes outside eclipse were found to be $5\mathop .\limits^m 95$ , $6\mathop .\limits^m 77$ , $6\mathop .\limits^m 75$ , $6\mathop .\limits^m 68$ , and $6\mathop .\limits^m 16$ , respectively. No phase effect was detected. We obtained two light-curve solutions: (1) assuming that the giant star was in front of the small one during eclipse, we determined the stellar radii, r s=0.0141 and r g=0.0228 (in fractions of the semimajor axis of the orbit); and (2) assuming that the small star was in front of the giant one, we derived r g=0.0186 and r s=0.0180 for the V band. The brightness of the primary star in the bands from U to I is L 1=0.96, 0.92, 0.90, 0.89, and 0.88, the orbital inclination is $i = 87^\circ .1$ , and the maximum eclipse phase is α0= 0.66. In both cases, we accepted the U hypothesis, assumed the orbit to be elliptical, and took into account the flux from the star Θ1 Ori E that fell within the photometer aperture. The first solution leads to a discrepancy between the primary radius determined by solving the light curve and the radial-velocity curve and its value estimated from the luminosity and temperature. This discrepancy is eliminated in the second solution, and it turns out that, by all parameters, the primary corresponds to a normal zero-age main-sequence star.  相似文献   

6.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

7.
In 1982 and 1993, we carried out highly accurate photoelectric WBVR measurements for the close binary IT Cas. Based on these measurements and on the observations of other authors, we determined the apsidal motion $\left[ {\dot \omega _{obs} = {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} \mathord{\left/ {\vphantom {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ . This value is in agreement with the theoretically calculated apsidal motion for these stars $\left[ {\dot \omega _{th} = {{(14^\circ \pm 3^\circ )} \mathord{\left/ {\vphantom {{(14^\circ \pm 3^\circ )} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ .  相似文献   

8.
We present photoelectric and spectroscopic observations of the protoplanetary object V 1853 Cyg, a B supergiant with an IR excess. Over two years of its observations, the star exhibited rapid irregular light variations with amplitudes $\Delta V = 0\mathop .\limits^m 3$ , $\Delta B = 0\mathop .\limits^m 3$ , $\Delta U = 0\mathop .\limits^m 4$ and no correlation between color and magnitude. Its mean magnitude has not changed since the first UBV observations in 1973 (Drilling 1975). Low-resolution spectroscopic observations show that the spectrum of V 1853 Cyg in 2000 corresponded to that of a B1–B2 star with T eff ~ 20000 K. High-resolution spectroscopic observations confirm the conclusion that the profiles of absorption and emission lines are variable. We identified the star’s spectral lines and measured the equivalent widths of more than 40 lines. The star’s radial velocity is 〈V r 〉= ?49 × 5 km s?1, as measured from absorption lines, and ranges from–50 to–85 km s–1 for different lines, as measured from shell emission lines. The velocity of the dust clouds on the line of sight determined from diffuse interstellar bands (DIBs) and from interstellar Na I lines is 〈V r 〉= ?16 × 5 km s?1. The P Cyg profiles of the He I λ5876 Å and λ6678 Å lines suggest an ongoing mass loss by the star. An analysis of the observational data confirms the conclusion that the star belongs to the class of intermediatemass protoplanetary objects.  相似文献   

9.
Several authors (Basano and Hughes, 1979; ter Haar and Cameron, 1963, Dermott, 1968; Prentice, 1976) give the revised Titius-Bode law in the form $$r_n = r_o C^n ,$$ wherer n stands for the distance of thenth planet from the Sun;r o andC are constant. They pointed out, in addition, that regular satellites systems around major planets obey also that law. It is now generally thought that the Kant-laplace primeval nebula accounts for the origin and evolution of the solar system (Reeves, 1976). Furthermore, it is shown (Prentice, 1976) that rings, which obey the Titius-Bode law, are formed through successive contractions of the solar nebula. Among difficulties encountered by Prentice's theory, the formation of regular satellites similar to the planatery system is the most important one. Indeed, the starting point of the planetary system is a rotating flattened circular solar nebula, whereas a gaseous ring must be the starting point of satellites systems. As far as the Titius-Bode law is concerned, we have the feeling that orbits of planets around the Sun and of satellites around their primaries do not depend on starting conditions. That law must be inherent to gravitation, in the same manner that electron orbits depend only on the atomic law instead of the starting conditions under which an electron is captured. If it is correct, then one may expect to formulate similarity between the T-B law and the Bohr law in the early quantum theory. Such a similarity is found (Louise, 1982) by using a postulate similar to the Bohr-Sommerfeld one — i.e., $$\int_{r_o }^{r_n } {U(r) dr = nk,}$$ whereU(r)=GM /r is the potential created by the Sun,k is a constant, andn a positive integer. This similarity suggests the existence of an unknown were process in the solar system. The aim of the present paper is to investigate the possibility of such a process. The first approach is to study a steady wave encountered in special membrane, showing node rings similar to the Prentice's rings (1976) which obey the T-B law. In the second part, we try to apply the now classical Lindblad-Lin density wave theory of spiral galaxies to the solar nebula case. This theory was developed since 1940 (Lindblad, 1974) in order to account for the persistence of spiral structure of galaxies (Lin and Shu, 1964; Lin, 1966; Linet al., 1969; Contopoulos, 1973). Its basic assumption concerns the potential functionU expressed in the form $$U = U_0 + \tilde U,$$ whereU o stands for the background axisymmetric potential due to the disc population, and ?«U o is responsible of spiral density wave. Then, the corresponding mass-density distribution is \(\rho = \rho _o + \tilde \rho\) , with \(\tilde \rho \ll \rho _o\) . Both quantities ? and \(\tilde \rho\) must satisfy the Poisson's equation $$\nabla ^2 \tilde U + 4\pi G\tilde \rho = 0.$$ It is shown by direct observations that most spiral arms fit well with a logarithmic spiral curve (Danver, 1942; Considère, 1980; Mulliard mand Marcelin, 1981). From the physical point of view, they are represented by maxima of ? (or \(\tilde \rho\) ) which is of the form $$\tilde U = cte cos (q log_e r - m\theta ),$$ wherem is an integer (number of arms),q=cte, andr and θ are polar coordinates. The distancer is expressed in an arbitrary unit (r=d/do). In the case of an axisymmetric solar nebula (m=0), successive maxima of \(\tilde U\) are rings showing similar T-B law $$d = d_o C^n ,$$ withC=e 2 π/q constant, andn is a positive integer. It is noted, in addition, that the steady wave equation within the special membrane quoted above and the new expression of the Poisson's equation derived from (5) are quite similar and expressed in the form $$\nabla ^2 \tilde U + cte\tilde U/r^2 = 0.$$ This suggests that both spiral structure of galaxies and Prentice's rings system result from a wave process which is investigated in the last section. From Equation (2) it is possible to derive the wavelength of the assumed wave ‘χ’, by using a procedure similar to the one by L. De Broglie (1923). The velocity of the wave ‘χ’ process is discussed in two cases. Both cases lead to a similar Planck's relation (E=hv).  相似文献   

10.
Pulsar emission     
  相似文献   

11.
We examine the possibility that the observed cosmic-ray protons are of primary extragalactic origin. The present \(\bar p\) data are consistent with a primary extragalactic component having \(\bar p\) /p?3.2±0.7 x 10-4 independent of energy. Following the suggestion that most extragalactic cosmic rays are from active galaxies, we propose that most of the observed \(\bar p\) 's are alos from the same sites. This would imply the possibility of destroying the corresponding \(\bar \alpha \) 'sat the source, thus leading to a flux ratio \(\bar \alpha \) /α< \(\bar p\) /p. We further predict an estimate for \(\bar \alpha \) α~10-5, within the range of future cosmic-ray detectors. the cosmological implications of this proposal are discussed.  相似文献   

12.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

13.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

14.
If \(T = \sum\nolimits_{i = 1}^\infty {\varepsilon ^i } T_i\) and \(W = \sum\nolimits_{n = 1}^\infty {n\varepsilon ^{n - 1} } W^{\left( n \right)}\) are respectively the generators of Giorgilli-Galgani's and Deprit's transformations, we show that the change of variables generated byT is the inverse of the one generated byW, ifT i =W (i) for anyi. The method used is to show that the recurrence which defines the first algorithm can also be obtained with the second one.  相似文献   

15.
Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (m c , a c , q c , Q c , i c ) are restricted to $$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$ during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range $45{\deg}\lessapprox i_c\lessapprox 135{\deg}$ if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values $$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$ If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.  相似文献   

16.
17.
A linear analysis of the asymmetries in Stokes profiles of magnetic lines is performed. The asymmetries in the linear and circular polarization profiles are characterized by suitable quantities, \(\delta \tilde Q\) and \(\delta \tilde V\) , strictly related to observed profiles. The response functions of \(\delta \tilde Q\) and \(\delta \tilde V\) to velocity fields are introduced and computed for various configurations of the magnetic field vector in a Milne-Eddington atmosphere. Some conclusions are drawn as to the importance of the asymmetries in Stokes profiles for recovering the velocity gradients from observations.  相似文献   

18.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

19.
Generalized Jacobian coordinates can be used to decompose anN-body dynamical system intoN-1 2-body systems coupled by perturbations. Hierarchical stability is defined as the property of preserving the hierarchical arrangement of these 2-body subsystems in such a way that orbit crossing is avoided. ForN=3 hierarchical stability can be ensured for an arbitrary span of time depending on the integralz=c 2 h (angular momentum squared times energy): if it is smaller than a critical value, defined by theL 2 collinear equilibrium configuration, then the three possible hierarchical arrangements correspond to three disconnected subsets of the invariant manifold in the phase space (and in the configuration space as well; see Milani and Nobili, 1983a). The same definitions can be extended, with the Jacobian formalism, to an arbitrary hierarchical arrangement ofN≥4 bodies, and the main confinement condition, the Easton inequality, can also be extended but it no longer provides separate regions of trapped motion, whatever is the value ofz for the wholeN-body system,N≥4. However, thez criterion of hierarchical stability applies to every 3-body subsystem, whosez ‘integral’ will of course vary in time because of the perturbations from the other bodies. In theN=4 case we decompose the system into two 3-body subsystems whosec 2 h ‘integrals’,z 23 andz 34, att=0 are assumed to be smaller than the corresponding critical values \(\tilde z_{23} \) and \(\tilde z_{34} \) , so that both the subsystems are initially hierarchically stable. Then the hierarchical arrangement of the 4 bodies cannot be broken until eitherz 23 orz 34 is changed by an amount \(\tilde z_{ij} - z_{ij} \left( 0 \right)\) ; that is the whole system is hierarchically stable for a time spain not shorter than the minimum between \(\Delta t_{23} = {{\left( {\tilde z_{23} - z_{23} \left( 0 \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\tilde z_{23} - z_{23} \left( 0 \right)} \right)} {\dot z_{23} }}} \right. \kern-0em} {\dot z_{23} }}\) and \(\Delta t_{34} = {{\left( {\tilde z_{34} - z_{34} \left( 0 \right)} \right)} \mathord{\left/ {\vphantom {{\left( {\tilde z_{34} - z_{34} \left( 0 \right)} \right)} {\dot z_{34} }}} \right. \kern-0em} {\dot z_{34} }}\) . To estimate how long is this stability time, two main steps are required. First the perturbing potentials have to be developed in series; the relevant small parameters are some combinations of mass ratios and length ratios, the? ij of Roy and Walker. When an appropriate perturbation theory is based on the? ij , the asymptotic expansions are much more rapidly decreasing than the usual expansions in powers of the mass ratios (as in the classical Lagrange perturbation theory) and can be extended also to cases such as lunar theory or double binaries. The second step is the computation of the time derivatives \(\dot z_{ij} \) (we limit ourselves to the planar case). To assess the long term behaviour of the system, we can neglect the short-periodic perturbations and discuss only the long-periodic and the secular perturbations. By using a Poisson bracket formalism, a generalization of Lagrange theorem for semimajor axes and a generalization of the classical first order theories for eccentricities and pericenters, we prove that thez ij do not undergo any secular perturbation, because of the interaction with the other subsystem, at the first order in the? ik . After the long-periodic perturbations have been accounted for, and apart from the small divisors problems that could arise both from ordinary and secular resonances, only the second order terms have to be considered in the computation of Δt 23, Δt 34. A full second order perturbative theory is beyond the scope of this paper; however an order-of-magnitude lower estimate of the Δt ij can be obtained with the very pessimistic assumption that essentially all the second order terms affect in a secular way thez ij . The same method could be applied also toN≥5 body systems. Since almost everyN-body system existing in nature is strongly hierarchical, the product of two? ij is very small for almost all the real astronomical problems. As an example, the hierarchical stability of the 4-body system Sun, Mercury, Venus, and Jupiter is investigated; this system turns out to be stable for at least 110 million years. Although this hierarchical stability time is ~10 times less than the real age of the Solar System, taking into account that many pessimistic assumptions have been done we can conclude that the stability of the Solar System is no more a forbidden problem for Celestial Mechanics.  相似文献   

20.
In a static gravitational field the paths of light are curved, as noticed by H. Weyl. This property can bea priori stated for aV 3 Riemannian manifold: through any two points ofV 3 it is possible to draw two families of curves, the straight lines of Euclidean geometry and the photon trajectoriesz. We can perform a fibration of the Galilean space-time in an original way, by taking thez-trajectories of the photons as the base, the isochronic surfaces as fibres, and ‘the equal length time on az trajectory to reach a given point’ as the equivalence relation. The straight lines of Euclidean geometry can then carry the classical mechanics timet, and thez trajectories can carry the optics time t. These times are related by dt=F(x,t) dt. If we class the Universe as a pseudo-Riemannian manifold of normal hyperbolic typeC , the time t determined above can be taken as the time coordinate inV 4. Under these conditions we have \(d\overline s ^2 \) =F 2 \(d\overline s ^2 \) , where \(d\overline s ^2 \) is the metric of the Riemannian manifold, conforming to the metric ds 2 and allowing t as the cosmic time. We can then use the results previously achieved by the author (Peton, 1979) and write: 1 +Z G =F(A s,t s,)/F(Aos,t o) wherez G denotes the shift of the spectral lines due to the metric. In the case of relative motion betweenO andS, we have $${\text{1 + z' = (1 + }}z_{\text{G}} {\text{)(1 + }}\beta _{\text{r}} {\text{)(1 }} - {\text{ }}\beta ^2 {\text{)}}^{ - 1/2} $$ The Doppler-Fizeau effect therefore appears as a result of the application of the Fermat principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号