首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100ms–1), while the western beams detect lower velocities and higher spectral widths (above 200ms–1). The more distant of the two channels has only one spectral signature with velocities above the ionacoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate) electric field conditions.  相似文献   

2.
Backscatter from E-region irregularities was observed at aspect angles close to 90° (almost parallel to the direction of the magnetic field) using the ALOMAR SOUSY radar at Andoya/Norway. Strong electric fields and increased E-region electron temperatures simultaneously measured with the incoherent scatter facility EISCAT proved that the Farley-Buneman plasma instability was excited. In addition, strong particle precipitation was present as inferred from EISCAT electron densities indicating that the gradient drift instability may have been active, too. Backscatter at such large aspect angles was not expected and has not been observed before. The characteristics of the observed echoes, however, are in many aspects completely different from usual auroral radar results: the Doppler velocities are only of the order of 10 m/s, the half-width of the spectra is around 5 m/s, the echoes originate at altitudes well below 100 km, and they seem to be not aspect-sensitive with respect to the magnetic field direction. We, therefore, conclude that the corresponding irregularities are not caused by the mentioned instabilities and that other mechanism have to be invoked.  相似文献   

3.
The SuperDARN HF radars have been employed in the past to investigate the spectral characteristics of coherent backscatter from L-shell aligned features in the auroral E region. The present study employs all-sky camera observations of the aurora from Husafell, Iceland, and the two SuperDARN radars located on Iceland, Þykkvibær and Stokkseyri, to determine the optical signature of such backscatter features. It is shown that, especially during quiet geomagnetic conditions, the backscatter region is closely associated with east-west aligned diffuse auroral features, and that the two move in tandem with each other. This association between optical and radar aurora has repercussions for the instability mechanisms responsible for generating the E region irregularities from which radars scatter. This is discussed and compared with previous studies investigating the relationship between optical and VHF radar aurora. In addition, although it is known that E region backscatter is commonly observed by SuperDARN radars, the present study demonstrates for the first time that multiple radars can observe the same feature to extend over at least 3 h of magnetic local time, allowing precipitation features to be mapped over large portions of the auroral zone.  相似文献   

4.
Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.  相似文献   

5.
The EISCAT UHF radar system was used to study the characteristics of E-region coherent backscatter at very large magnetic aspect angles (5–11°). Data taken using 60 s pulses during elevation scans through horizontally uniform backscatter permitted the use of inversion techniques to determine height profiles of the scattering layer. The layer was always singly peaked, with a mean height of 104 km, and mean thickness (full width at half maximum) of 10 km, both independent of aspect angle. Aspect sensitivities were also estimated, with the Sodankylä-Tromsø link observing 5 dB/degree at aspect angles near 5°, decreasing to 3 dB/degree at 10° aspect angle. Observed coherent phase velocities from all three stations were found to be roughly consistent with LOS measurements of a common E-region phase velocity vector. The E-region phase velocity had the same orientation as the F-region ion drift velocity, but was approximately 50% smaller in magnitude. Spectra were narrow with skewness of about –1 (for negative velocities), increasing slightly with aspect angle.  相似文献   

6.
A theory of the generation of plasma density irregularities with virtually no aspect sensitivity, in the lower ionosphere at high latitudes, by electron drifts aligned with the geomagnetic field, is presented. The theory is developed through fluid equations in which the destabilising mechanism involves positive feedback from electron collisional heating. When field aligned electron drift speeds exceed a few km s–1, this effect destabilises waves with wavelengths in excess of a few tens of metres in the lower E-region, where collisional effects are sufficiently large. Furthermore, the threshold conditions are almost independent of the wave propagation direction and the unstable waves propagate at speeds well below the ion acoustic speed. The role that this new instability may play in recent radar backscatter observations of short scale irregularities propagating in directions close to that of the geomagnetic field, in the lower E-region is also considered.  相似文献   

7.
The method for estimating the behavior of the ionospheric irregularity motion vector in the artificially disturbed HF ionospheric region has been proposed, and this behavior has been analyzed based on the simultaneous Doppler observations performed on several paths using the method of bi-static backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities. The Doppler measurements were performed during the modification of the auroral ionosphere by powerful HF radiowaves emitted by the EISCAT heating facility (Tromsø, Norway). It has been obtained that the dynamics of the ionospheric irregularity directions in the F region, calculated based on the Doppler measurements of the total vector of the ionospheric irregularity velocity above the Tromsø EISCAT radar at a frequency of 931 MHz, is in satisfactory agreement with such calculations performed using the three-position method.  相似文献   

8.
High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited.  相似文献   

9.
The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a shortlived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150–200 km) and electron (in E region) temperatures. During its occurrence, the electric field in the E-region was extremely large (150 mV/m). A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS) at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS.  相似文献   

10.
Substorm-associated radar auroral surges (SARAS) are a short lived (15–90 minutes) and spatially localised (5° of latitude) perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE), in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 ms–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs). The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.  相似文献   

11.
Optical observations of 557.7 nm and 630.0 nm emissions from discrete auroral arcs in the post-noon sector have been related to localised field-aligned enhancements in the spatial distribution of E- and F-layer electron density respectively seen in images reconstructed by ionospheric tomography. Results from two case studies are presented in which meridian scanning photometer and all-sky camera observations on Svalbard have been compared to electron-density structures found by tomographic inversion of measurements made by reception of radio signals at a chain of four stations at high latitude. The F-layer features are long-lived and show exact correspondence to the red-line emissions. Transient arcs in green-line intensity result in E-region structures that are resolved in one case, but not in another where the dynamic auroral forms are separated by less than one degree of latitude. The signature of an inverted-V precipitation event is clearly evident in one example.  相似文献   

12.
The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohms law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work). We present the essential elements of this new model and illustrate the models usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred A m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.  相似文献   

13.
Interhemispheric contrasts in the ionospheric convection response to variations of the interplanetary magnetic field (IMF) and substorm activity are examined, for an interval observed by the Polar Anglo-American Conjugate Experiment (PACE) radar system between 1600 and 2100 MLT on 4 March 1992. Representations of the ionospheric convection pattern associated with different orientations and magnitudes of the IMF and nightside driven enhancements of the auroral electrojet are employed to illustrate a possible explanation for the contrast in convection flow response observed in radar data at nominally conjugate points. Ion drift measurements from the Defence Meteorological Satellite Program (DMSP) confirm these ionospheric convection flows to be representative for the prevailing IMF orientation and magnitude. The location of the fields of view of the PACE radars with respect to these patterns suggest that the radar backscatter observed in each hemisphere is critically influenced by the position of the ionospheric convection reversal boundary (CRB) within the radar field of view and the influence it has on the generation of the irregularities required as scattering targets by high-frequency coherent radar systems. The position of the CRB in each hemisphere is strongly controlled by the relative magnitudes of the IMF Bz and By components, and hence so is the interhemispheric contrast in the radar observations.  相似文献   

14.
A previous study, based on incoherent and coherent radar measurements, suggested that during auroral E-region electron heating conditions, the electron flow in the auroral electrojet undergoes a systematic counterclockwise rotation of several degrees relative to the E×B direction. The observational evidence is re-examined here in the light of theoretical predictions concerning E-region electron demagnetization caused by enhanced anomalous cross-field diffusion during strongly-driven Farley-Buneman instability. It is shown that the observations are in good agreement with this theory. This apparently endorses the concept of wave-induced diffusion and anomalous electron collision frequency, and consequently electron demagnetization, under circumstances of strong heating of the electron gas in the auroral electrojet plasma. We recognize, however, that the evidence for electron demagnetization presented in this report cannot be regarded as definitive because it is based on a limited set of data. More experimental research in this direction is thus needed.  相似文献   

15.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   

16.
Spatial structures in ionospheric electron density revealed in a tomographic image have been identified with auroral forms and related to their sources in precipitating particles observed by DMSP satellites. The observations of plasma enhancements relate to discrete auroral arcs seen in the post-noon sector, identified by both red- and green-line emissions measured by a meridional scanning photometer. The features lie within a very narrow latitudinal band on L-shells where the satellite detectors observed electron precipitation classified as from the boundary plasma sheet (BPS). The harder particles are identified with an E-region structure, while further north the precipitation is softer, resulting in a localised F-layer blob and 630.0 nm emissions. A steep gradient in plasma density represent a signature in the ionosphere of the central plasma sheet (CPS)/BPS boundary. A transition to a less-structured F-layer is found on crossing the convection reversal boundary.On leave from Artic Geophysics, University Course on Svalbard (UNIS), N-9170 Longyearbyen, Norway  相似文献   

17.
Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index) has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986). The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index) and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT) tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT) tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earths magnetic dipole inclination.  相似文献   

18.
The interaction between the Earth’s ionosphere and magnetosphere in a situation when artificial disturbances are generated in the F region of the auroral ionosphere with the EISCAT/Heating facility is studied. An experiment was performed in the daytime when the facility effective radiated power changed in a stepwise manner. Wavelike disturbances with periods of (130–140) s corresponding to Pc4 pulsations were simultaneously registered by the method of bi-static backscatter and with ground magnetometers. The variations in the Doppler frequency shift were correlated with the changes in the facility power. Incoherent scatter radar measurements at a frequency of 930 MHz (Tromsö) and numerical calculations were used in an analysis. It has been indicated that the ionospheric drift of small-scale artificial ionospheric irregularities was modulated by magnetospheric Alfvén waves. The possible effect of powerful HF radioemission on the Alfvén wave amplitude owing to the modification of the magnetospheric resonator ionospheric edge reflectivity and the generation of an outgoing Alfvén wave above the region where the ionospheric conductivity is locally intensified has been considered.  相似文献   

19.
We conducted a statistical analysis of the physical characteristics of the micropulsation activity (Pc3 and Pc4 range) detected, during the austral summer 1994/95, at Terra Nova Bay (Antarctica, corrected latitude 80.0°S), a station which is few degrees poleward of those where most of the Antarctic measurements in these frequency ranges have been performed. The emerging overview suggests that the correspondence between the pulsation power and the external parameters (solar wind speed, interplanetary magnetic field magnitude and orientation) is significantly stronger than at somewhat lower latitudes. The day-to-day power variability was found to be strictly related to the general level of the geomagnetic activity, and the power level sharply maximizes at local magnetic noon. In the Pc4 range peaks of correlation with the SW speed are found in the dawn and dusk sides of the Earths magnetosphere and the daily variation of the polarization pattern is closely consistent with that found at auroral latitudes and at lower frequencies. In the Pc3 range the correlation coefficient between the pulsation power and the SW speed has maximum values in the local morning, and the frequency of selected events reveals a strong IMF control during closed magnetospheric conditions. The local time dependence of the correlation coefficient between the pulsation power and the cone angle reveals an additional control by the IMF orientation, which becomes more explicit around local noon.  相似文献   

20.
We have analyzed the response of azimuthal component of the ionospheric electric field to auroral arc activity. We have chosen for analysis three intervals of coordinated EISCAT and TV observations on 18 February, 1993. These intervals include three kinds of arc activity: the appearance of a new auroral arc, the gradual brightening of the existing arc and variations of the arc luminosity. The arcs were mostly east-west aligned. In all cases, the enhancement of arc luminosity is accompanied by a decrease in the westward component of the ionospheric electric field. In contrast, an increase of that component seems to be connected with arc fading. The observed response is assumed to have the same nature as the short circuit of an external electric field by the conductor. The possible consequence of this phenomenon is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号