首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

2.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

3.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

4.
—Broad band digital three-component data recorded at UNM, a GEOSCOPE station, were used to estimate Lg coda Q for 34 medium size (3.9 ≤m b ≤ 6.3) earthquakes with travel paths laying in different geological provinces of southern Mexico in an effort to establish the possible existence of geological structures acting as wave guides and/or travel paths of low attenuation between the Pacific coast and the Valley of Mexico. The stacked spectral ratio method proposed by XIE and NUTTLI (1988) was chosen for computing the coda Q. The variation range of Q 0 (Q at 1?Hz) and the frequency dependence parameter η estimates averaged on the frequency interval of 0.5 to 2?Hz for the regions and the three components considered are: i) Guerrero region 173 ≤ 0≤ 182 and 0.6 ≤ 0 ≤ 0.7, ii) Oaxaca region 183 ≤ 0 ≤ 198 and 0.6 ≤ 0 ≤ 0.8, iii) Michoacan-Jalisco region 187 ≤ 0 ≤ 204 and 0.7 ≤ 0 ≤ 0.8 and iv) eastern portion of the Transmexican Volcanic Belt (TMVB) 313 ≤Q 0≤ 335 and η = 0.9. ¶The results show a very high coda Q for the TMVB as compared to other regions of southern Mexico. This unexpected result is difficult to reconcile with the geophysical characteristics of the TMVB, e.g., low seismicity, high volcanic activity and high heat flow typical of a highly attenuating (low Q) region. Visual inspection of seismograms indicates that for earthquakes with seismic waves traveling along the TMVB, the amplitude decay of Lg coda is anomalously slow as compared to other earthquakes in southern Mexico. Thus, it seems that the high Q value found does not entirely reflect the attenuation characteristics of the TMVB but it is probably contaminated by a wave-guide effect. This phenomenon produces an enhancement in the time duration of the Lg wave trains travelling along this geological structure. This result is important to establish the role played by the transmission medium in the extremely long duration of ground motion observed during the September 19, 1985 Michoacan earthquake. ¶The overall spatial distribution of coda Q values indicates that events with focus in the Michoacan-Jalisco and Oaxaca regions yield slightly higher values than those from Guerrero. This feature is more pronounced for the horizontal component of coda Q. A slight dependence of average coda Q ?1 on earthquake focal depth is observed in the frequency range of 0.2 to 1.0?Hz approximately on the horizontal component. Deeper (h > 50?km) events yield lower values of Q ?1 than shallower events. For frequencies higher than 1.0?Hz no clear dependence of Q ?1 on focal depth is observed. However, due to the estimates uncertainties this result is not clearly established.  相似文献   

5.
The attenuation characteristics based on coda waves of two areas—Jamnagar and Junagarh of Saurashtra, Gujarat (India)—have been investigated in the present study. The frequency dependent relationships have been developed for both the areas using single back scattering model. The broadband waveforms of the vertical components of 33 earthquakes (Mw 1.5–3.5) recorded at six stations of the Jamnagar area, and broadband waveforms of 68 earthquakes (Mw 1.6–5) recorded at five stations of the Junagarh area have been used for the analysis. The estimated relations for the Junagarh area are: Q c?=?(158?±?5)f(0.99±0.04) (lapse time : 20?s), Q c?=?(170?±?4.4)f(0.97±0.02) (lapse time : 30?s) and Q c?=?(229?±?6.6)f(0.94±0.03) (lapse time : 40?s) and for the Jamnagar area are: Q c?=?(178?±?3)f(0.95±0.05) (lapse time : 20?s), Q c?=?(224?±?6)f(0.98±0.06) (lapse time : 30?s) and Q c?=?(282?±?7)f(0.91±0.03) (lapse time : 40?s). These are the first estimates for the areas under consideration. The Junagarh area appears to be more attenuative as compared to the Jamnagar area. The increase in Q c values with lapse time found here for both the areas show the depth dependence of Q c as longer lapse time windows will sample larger area. The rate of decay of attenuation (Q ?1) with frequency for the relations obtained here is found to be comparable with those of other regions of the world though the absolute values differ. A comparison of the coda-Q estimated for the Saurashtra region with those of the nearby Kachchh region shows that the Saurashtra region is less heterogeneous. The obtained relations are expected to be useful for the estimation of source parameters of the earthquakes in the Saurashtra region of Gujarat where no such relations were available earlier. These relations are also important for the simulation of earthquake strong ground motions in the region.  相似文献   

6.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

7.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

8.
Coda Q Estimates in the Koyna Region, India   总被引:1,自引:0,他引:1  
—The coda Q, Q c ?, have been estimated for the Koyna region of India. The coda waves of 76 seismograms from thirteen local earthquakes, recorded digitally in the region during July–August, 1996, have been analyzed for this purpose at nine central frequencies viz., 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0 and 24.0 Hz using a single backscattering model. All events with magnitude less than 3 fall in the epicentral distances less than 60 km and have focal depths which range from 0.86 to 9.43 km. For the 30 sec coda window length the estimated Q c values vary from 81 to 261 at 1.5 Hz and 2088 to 3234 at 24 Hz, whereas the mean values of Q c with the standard error vary from 148 ± 13.5 at 1.5 Hz to 2703 ± 38.8 at 24 Hz. Both the estimated Q c values and their mean values exhibit the clear dependence on frequency in the region and a frequency dependence average attenuation relationship, Q c = 96f 1.09, has been obtained for the region, covering an approximate area of 11500 km2 with the surfacial extent of about 120 km and depth of 60 km.¶Lapse time dependence of Q c has also been studied for the region, with the coda waves analyzed at five lapse time windows from 20 to 60 sec duration with the difference of 10 sec. The frequency dependence average Q c relationships obtained at these window lengths Q c = 66f 1.16 (20 sec), Q c = 96f 1.09 (30 sec), Q c =131f 1.04 (40 sec), Q c = 148f 1.04 (50 sec), Q c = 182f 1.02 (60 sec) show that the frequency dependence (exponentn) remains mostly stationary at all the lapse time window lengths, while the change in Q 0 value is significant. Lapse time dependence of Q c in the region is also interpreted as the function of depth.  相似文献   

9.
—Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q ?1 (Q c ?1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q i ?1) and scattering (Q s ?1) to total attenuation (Q t ?1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.  相似文献   

10.
Based on the Anapa (ANN) seismic station records of ~40 earthquakes (MW > 3.9) that occurred within ~300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth’s crust (Q(f)) and upper mantle are estimated for the S-waves in the 1–8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q(f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q(f) = 90 × f1.0 for r > 120 km. The established Q(f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9–5.6; however, the radiation of the high-frequency components (f > 4–5 Hz) is enhanced with the depth of the source (down to h ~ 60 km). The estimates Q(f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q(f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth’s crust in the other regions of the Northern Caucasus.  相似文献   

11.
Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.  相似文献   

12.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

13.
S coda wave of seventy-four local earthquakes recorded in a network of ten seismic stations were used to calculate coda Q attenuation (Qc) in the João Câmara area (northeastern Brazil). The estimates show Qc as a strong function of frequency in the range from 6.0 to 20.0 Hz. We found out that Qc in João Câmara has a functional form given by Qc= Q0 f, where Q0= 151 ± 99 and = 0.98 ± 0.05. If the standard deviations are taken into account,we conclude that there are no relevant changes in both Q0 and values from one station to another. The estimated Q0 values at the different stations suggest that the Samambaia fault is a boundary between two different seismic attenuation zones. In one side of the fault (left), where stations were installed in Pre-Cambrian terrain and thick sedimentary layer, the seismic attenuation is stronger than in the other side (stations installed in thin sedimentary layer and limestone outcrop).The anomalous Q0 values in the left side of the Samambaia fault can be explained due to the presence of a shallow conductive layer in the upper crust( 10 km), such as proposed by Padilha et al. (1992). According to our results, if there is a conductive layer in the area, it probably spreads over João Câmara city and surrounding regions.However, more detailed investigation either with seismic methods (seismic attenuation,3D tomography with P and/or S wave velocities) or with other geophysical methods is needed to interpret the observed differences in Q0 values between the two sides of the Samambaia fault.  相似文献   

14.
The attenuation property of Andaman Island has been investigated analyzing coda waves from 57 local earthquakes in the magnitude range of 2.0–4.9, using the single backscattering model. These earthquakes waveforms, recorded on five broadband seismographs sited over the island from north to south during Nov. 2003 to March 2004, have been used to calculate the frequency dependent Coda Q (Q c ) applying the time domain coda-decay method. The Coda Q, computed at central frequencies from (0.5–12) Hz and five-lapse time windows from 40 to 80 s, progressively increases from 105 f 0.88 in the north Andaman to 135 f 0.79 in the south Andaman with an average of 119 f 0.80. The average Q c values vary from 75 ± 42 at 0.5 Hz to 697 ± 54 at 12 Hz central frequency for 40 s lapse time window, while for 80 s lapse time window its variation is from 117 ± 38 at 0.5 Hz to 1256 ± 115 at 12 Hz. The Q c estimated at different lapse times manifests a significant variation from 122f 0.75 to 174f 0.73, corresponding to lapse time window lengths of 40 and 80 s, respectively. The variation of Q c with frequency, lapse time and also with the location of seismograph reflects the marked structural and compositional inhomogeneity with depth along the Andaman Islands. These observations are well correlated with the seismicity pattern and distinct high angle subduction beneath the island.  相似文献   

15.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

16.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

17.
The attenuation characteristics of the Kinnaur area of the North West Himalayas were studied using local earthquakes that occurred during 2008–2009. Most of the analyzed events are from the vicinity of the Panjal Thrust (PT) and South Tibetan Detachment Thrust, which are well-defined tectonic discontinuities in the Himalayas. The frequency-dependent attenuation of P and S waves was estimated using the extended coda normalization method. Data from 64 local earthquakes recorded at 10 broadband stations were used. The coda normalization of the spectral amplitudes of P and S waves was done at central frequencies of 1.5, 3, 6, 9, and 12 Hz. Q p increases from about 58 at 1.5 Hz to 706 at 12 Hz, and Q s increases from 105 at 1.5 Hz to 1,207 at 12 Hz. The results show that the quality factors for both P and S waves (Q p and Q s) increase as a function of frequency according to the relation Q?=?Q o f n , where Q o is the corresponding Q value at 1 Hz frequency and “n” is the frequency relation parameter. We obtained Q p?=?(47?±?2)f (1.04±0.04) and Q s?=?(86?±?4)f (0.96±0.03) by fitting power law dependency model for the estimated values of the entire study region. The Q 0 and n values show that the region is seismically very active and the crust is highly heterogeneous. There was no systematic variation of values of Q p and Q s at different frequencies from one tectonic unit to another. As a consequence, average values of these parameters were obtained for each frequency for the entire region, and these were used for interpretation and for comparison with worldwide data. Q p values lie within the range of values observed for some tectonically active regions of the world, whereas Q s values were the lowest among the values compared for different parts of the world. Q s/Q p values were >1 for the entire range of frequencies studied. All these factors indicate that the crust is highly heterogeneous in the study region. The high Q s/Q p values also indicate that the region is partially saturated with fluids.  相似文献   

18.
— On 28 March, 1999 (19:05:10.09, UT) a significant earthquake of M w 6.4 occurred in the Garhwal Himalaya (30.555°N, 79.424°E). One hundred and ten well-recorded aftershocks show a WNW-ESE trending northeasterly dipping seismic zone extending from a depth of 2 to 20?km. As the main shock hypocenter occurred at the northern end of this seismic zone and aftershocks extended updip, it is inferred that the main-shock rupture nucleated on the detachment plane at a depth of 15?km and then propagated updip along a NE-dipping thrust plane. Further, the epicentral distribution of aftershocks defines a marked concentration near a zone where main central thrust (MCT) takes a significant turn towards the north, which might be acting as an asperity in response to the NNE compression due to the underthrusting of Himalayan orogenic process prevalent in the entire region. Presence of high seismicity including five earthquakes of magnitude exceeding 6 and twelve earthquakes of magnitude exceeding 5 in the 20th century is presumed to have caused a higher level of shallow crustal heterogeneity in the Garhwal Himalaya, a site lying in the central gap zone of the Himalayan frontal arc. Attenuation property of the medium around the epicentral area of the 1999 Chamoli earthquake, covering a circular area of 61,500?km2 with a radius of 140?km, is studied by estimating the coda Q c from 48 local earthquakes of magnitudes varying from 2.5–4.8. These earthquakes were recorded at nine 24-bit REFTEK digital stations; two of which were equipped with three-component CMG40T broadband seismometers and others with three-component L4-3D short-period seismometers. The estimated Q o values at different stations suggest on average a low value of the order of (30?±?0.8), indicating an attenuating crust beneath the entire region. The frequency-dependent relation indicates a relatively low Q c at lower frequencies (1–3?Hz) that can be attributed to the loss of energy due to scattering on heterogeneities and/or the presence of faults and cracks. The large Q c at higher frequencies may be related to the propagation of backscattered body waves through deeper parts of the lithosphere where less heterogeneities are expected. An important observation is that the region north of MCT (more rigid highly metamorphosed crystalline rocks) is less attenuative in comparison to the region south of MCT (less rigid slightly metamorphosed rocks (sedimentary wedge)). The acceleration decays to 50% at 20?km distance and to 7% at 100?km. Hence, even 1g acceleration at the source may not cause significant damage beyond 100?km in this region.  相似文献   

19.
Attenuation of seismic waves is very essential for the study of earthquake source parameters and also for ground-motion simulations, and this is important for the seismic hazard estimation of a region. The digital data acquired by 16 short-period seismic stations of the Delhi Telemetric Network for 55 earthquakes of magnitude 1.5 to 4.2, which occurred within an epicentral distance of 100 km in an area around Delhi, have been used to estimate the coda attenuation Qc. Using the Single Backscattering Model, the seismograms have been analyzed at 10 central frequencies. The frequency dependence average attenuation relationship Qc = 142f 1.04 has been attained. Four Lapse-Time windows from 20 to 50 seconds duration with a difference of 10 seconds have been analyzed to study the lapse time dependence of Qc. The Qc values show that frequency dependence (exponent n) remains similar at all the lapse time window lengths. While the change in Q0 values is significant, change in Q0 with larger lapsetime reflects the rate of homogeneity at the depth. The variation of Qc indicates a definitive trend from west to east in accordance with the geology of the region.  相似文献   

20.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号