共查询到20条相似文献,搜索用时 12 毫秒
1.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radioactive energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming. 相似文献
2.
Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic ocean 总被引:1,自引:0,他引:1
瞿波 《中国海洋湖沼学报》2010,28(3):573-582
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming. 相似文献
3.
In this work,we examined long-term wave distributions using a third-generation numerical wave model called WAVE-WATCH-III(WW3)(version 6.07).We also evaluated the influence of sea ice on wave simulation by using eight parametric switches.To select a suitable ice-wave parameterization,we validated the simulations from the WW3 model in March,May,September,and December 2017 against the measurements from the Jason-2 altimeter at latitudes of up to 60°N.Generally,all parameterizations ex-hibited slight differences,i.e.,about 0.6 m root mean square error(RMSE)of significant wave height(SWH)in May and September and about 0.9 m RMSE for the freezing months of March and December.The comparison of the results with the SWH from the European Centre for Medium-Range Weather Forecasts for December 2017 indicated that switch IC4_M1 performed most effec-tively(0.68 m RMSE)at high latitudes(60°-80°N).Given this finding,we analyzed the long-term wave distributions in 1999-2018 on the basis of switch IC4_M1.Although the seasonal variability of the simulated SWH was of two types,i.e.,‘U’and‘sin’modes,our results proved that fetch expansion prompted the wave growth.Moreover,the interannual variability of the specific regions in the‘U’mode was found to be correlated with the decade variability of wind in the Arctic Ocean. 相似文献
4.
5.
Motoyoshi Ikeda 《极地研究(英文版)》2008,19(2):212-217
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover. 相似文献
6.
Pacific water exits the Chukchi Sea shelf through Barrow Canyon in the east and Herald Canyon in the west, forming an eastward-directed shelfbreak boundary current that flows into the Beaufort Sea. Here we summarize the transformation that the Pacific water undergoes in the two canyons, and describe the characteristics and variability of the resulting shelfbreak jet, using recently collected summertime hydrographic data and a year-long mooting data set. In both canyons the northward-flowing Pacific winter water switches from the western to the eastern flank of the canyon, interacting with the northward-flowing summer water. In Barrow canyon the vorticity structure of the current is altered, while in Herald canyon a new water mass mode is created. In both instances hydraulic effects are believed to be partly responsible for the observed changes. The shelfl)reak jet that forms from the canyon outflows has distinct seasonal configurations, from a bottom-intensified flow carrying cold, dense Pacific water in spring, to a surface-intensified current advecting warm, buoyant water in summer. The current also varies significantly on short timescales, from less than a day to a week. In fall and winter much of this mesoscale variability is driven by storm events, whose easterly winds reverse the current and cause upwelling. Different types of eddies are spawned from the current, which are characterized here using hydrographic and satellite data. 相似文献
7.
Picophytoplankton are responsible for much of the carbon fixation process in the Arctic Ocean, and they play an im- portant role in active microbial food webs. The climate of the Arctic Ocean has changed in recent years, and picophytoplankton, as the most vulnerable part of the high-latitude pelagic ecosystem, have been the focus of an increasing number of scientific studies. This paper reviews and summarizes research on the characteristics of picophytoplankton in the Arctic Ocean, including their abundance, biomass, spatial distribution, seasonal variation, commtmity structure, and factors influencing their growth. The impact of climate change on the Arctic Ocean picophytoplankton community is discussed, and future research directions are considered. 相似文献
8.
9.
To evaluate the particle dynamics and estimate the POC (particulate organic carbon) export flux from the euphotic zone in
the western Arctic Ocean, 234Th-238U disequilibrium was applied during the second Chinese National Arctic Research Expedition (July 15–September 26, 2003). The
POC export fluxes are estimated from the measured profiles of the 234Th/238U activity ratios and the POC/PTh ratios. The average residence times of the particulate and dissolved 234Th in the euphotic zone are 33 d and 121 d, and their average export fluxes are 480 dpm/m2d and 760 dpm/m2d, respectively. The scavenging and removal processes of particle reactive elements are active in the upper layer of the Chukchi
Sea. The average residence time of 234Th increases from shelf to basin, while the export fluxes of 234Th decrease. The estimated POC export fluxes from the euphotic zone vary from 2.1 to 20.3 mmol/m2d, indicating that the western Arctic Ocean is an important carbon sink in summer due to efficient biological pump. 相似文献
10.
11.
Oceanic heat flux(Fw) is the vertical heat flux that is transmitted to the base of sea ice. It is the main source of sea ice bottom melting. The residual method was adopted to study oceanic heat flux under sea ice. The data acquired by 28 ice mass balance buoys(IMBs) deployed over the period of 2004 to 2013 in the Arctic Ocean were used. Fw values presented striking seasonal and spatial variations. The average summer Fw values for the Canada Basin, Transpolar Drift, and Multiyear Ice area were 16.8, 7.7, and 5.9 W m^-2, respectively. The mean summer F-w for the whole Arctic was 10.1 W m^-2, which was equivalent to a bottom melt of 0.4 m. Fw showed an autumn peak in November in the presence of the near-surface temperature maximum(NSTM). The average Fw for October to December was 3.7 W m^-2. And the average Fw for January to March was 1.0 W m^-2, which was approximately one third of the average Fw in the presence of NSTM. The summer Fw was almost wholly attributed to the incident solar radiation that enters the upper ocean through leads and the open water. Fw calculated through the residual method using IMB data was compared with that calculated through the parameterization method using Autonomous Ocean Flux Buoy data. The results revealed that the Fw provided by the two methods were consistent when the sea ice concentration exceeded 70% and mixing layer temperature departure from freezing point was less than 0.15℃. Otherwise, the Fw yielded by the residual method was approximately one third smaller than that provided by the parameterization method. 相似文献
12.
《青岛海洋大学学报(英文版)》2014,(1):45-50
The heat budget of a melt pond surface and the solar radiation allocation at the melt pond are studied using the 2010Chinese National Arctic Research Expedition data collected in the central Arctic. Temperature at a melt pond surface is proportionalto the air temperature above it. However, the linear relationship between the two varies, depending on whether the air temperature ishigher or lower than 0°C. The melt pond surface temperature is strongly influenced by the air temperature when the latter is lowerthan 0°C. Both net longwave radiation and turbulent heat flux can cause energy loss in a melt pond, but the loss by the latter is largerthan that by the former. The turbulent heat flux is more than twice the net longwave radiation when the air temperature is lower than0°C. More than 50% of the radiation energy entering the pond surface is absorbed by pond water. Very thin ice sheet on the pondsurface (black ice) appears when the air temperature is lower than 0°C; on the other hand, only a small percentage (5.5%) of netlongwave in the solar radiation is absorbed by such a thin ice sheet. 相似文献
13.
14.
15.
Radiation of lamp and optimized experiment using artificial light in the Arctic Ocean 总被引:1,自引:0,他引:1
A winter optical experiment by an artificial lamp was conducted in the Amundsen Bay of Arctic Ocean from November of 2007 to January of 2008.The radiation field emitted from an artificial lamp was measured and is introduced in this paper ,and the optimized experiment project is discussed.It is demonstrated that the minimum size allowed of the lamp is determined by both the field of view(FOV) of optical instrument and the measuring distance from the lamp.Some problems that might influence on the experimen... 相似文献
16.
17.
Surface heat budget and solar radiation allocation at a melt pond during summer in the central Arctic Ocean 总被引:3,自引:0,他引:3
The heat budget of a melt pond surface and the solar radiation allocation at the melt pond are studied using the 2010 Chinese National Arctic Research Expedition data collected in the central Arctic. Temperature at a melt pond surface is proportional to the air temperature above it. However, the linear relationship between the two varies, depending on whether the air temperature is higher or lower than 0℃. The melt pond surface temperature is strongly influenced by the air temperature when the latter is lower than 0℃. Both net longwave radiation and turbulent heat flux can cause energy loss in a melt pond, but the loss by the latter is larger than that by the former. The turbulent heat flux is more than twice the net longwave radiation when the air temperature is lower than 0℃. More than 50% of the radiation energy entering the pond surface is absorbed by pond water. Very thin ice sheet on the pond surface(black ice) appears when the air temperature is lower than 0℃; on the other hand, only a small percentage(5.5%) of net longwave in the solar radiation is absorbed by such a thin ice sheet. 相似文献
18.
An Arctic Ocean eddy in sub-surface layer is analyzed in this paper by use of temperature,salinity and current profiles data obtained at an ice camp in the Canada Basin during the second Chinese Arctic Expedition in summer of 2003.In the vertical temperature section,the eddy shows itself as an isolated cold water block at depth of 60 m with a minimum temperature of-1.5℃,about 0.5℃ colder than the ambient water.Isopycnals in the eddy form a pattern of convex,which indicates the eddy is anticyclonic.Although maximum velocity near 0.4 m s-1 occurs in the current records observed synchronously,the current pattern is far away from a typical eddy.By further analysis,inertial frequency oscillations with amplitudes comparable with the eddy velocity are found in the sub-surface layer currents.After filter the inertial current and mean current,an axisymmetric current pattern of an eddy with maximum velocity radius of 5 km is obtained.The analysis of the T-S characteristics of the eddy core water and its ambient waters supports the conclusion that the eddy was formed on the Chukchi Shelf and migrated northeastward into the northern Canada Basin. 相似文献
19.
Summertime freshwater fractions in the surface water of the western Arctic Ocean evaluated from total alkalinity 总被引:2,自引:0,他引:2
As a quasi-conservative tracer, measures of total alkalinity (TA) can be utilized to trace the relative fractions of freshwater and seawater. In this study, based on the TA and related data collected during the third Chinese National Arctic Research Expedition (JulySeptember 2008, 3rd CHINARE-Arctic) and the fourth Chinese National Arctic Research Expedition (JulySeptember 2010, 4th CH1NARE-Arctic), fractions of sea-ice meltwater, river runoff, and seawater within the surface water of the western Arctic Ocean were determined using salinil~~ and TA relationships. The largest fraction of seeL-ice meltwater was found around 75~N within the Canada Basin during both surveys, which is located at the ice edge. Generally, it was found that the frac- tion of river runoff was less than that of sea-ice meltwater. The river runoff, composed mainly of contributions from the Yukon River carried by Bering inflow water and the Mackenzie River, was influenced by the currents, leading to two peak areas of its fraction. Our results show that the dilution effect of freshwater carried by Bering inflow water during the 3rd CH1NARE-Arctic in 2008 expedition period may be stronger than that during the 4th CH1NARE-Arctic in 2010 expedition period. The peak area of sea-ice meltwater fraction during the 4th CH1NARE-Arctic was different from that of the 3rd CHINAR-E-Arctic, corresponding to their sea-ice condition. 相似文献
20.
ZHANG Tianzhen ZHUANG Yanpei JIN Haiyan LI Ke JI Zhongqiang LI Yangjie BAI Youcheng 《中国海洋大学学报(英文版)》2019,(3):573-579
Climate warming has a significant impact on the sea ice and ecosystem of the Arctic Ocean.Under the increasing numbers of melt ponds in Arctic sea ice,the phytoplankton communities associated with the ice system are changing.During the 7th Chinese National Arctic Research Expedition cruise in summer 2016,photosynthesis pigments and nutrients were analyzed,revealing differences in phytoplankton communities between melt ponds and open water in the central Arctic.Photosynthetic pigment analysis suggested that Fuco(5-91μg m^-3)and Diadino(4-21μg m^-3)were the main pigments in the open water.However,the melt ponds had high concentrations of Viola(7-30μg m^-3),Lut(4-59μg m^-3)and Chl b(11-38μg m^-3),suggesting that green algae dominated phytoplankton communities in the melt ponds.The significant differences in phytoplankton communities between melt ponds and open water might be due to the salinity difference.Moreover,green algae may play a more important role in Arctic sea ice ecosystems with the expected growing number of melt ponds in the central Arctic Ocean. 相似文献