首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 297 毫秒
1.
陶玮  洪汉净  刘培洵  于泳  郑秀珍 《地震》2003,23(2):48-57
根据主要构造分布、震源机制解分布及地震活动状况,将中国大陆及邻区分成20个单元,6个区。利用中国地震局地球物理研究所提供的地震目录,计算近百年来各单元和各区的6级以上强震释放应变能,做出时间滑动后的应变能—时间曲线图,分析认为:(a)中国大陆及邻区百年来的强震活动是一个复杂的时空动态过程,每个区、带有其高、低潮,然而各地区没有统一的地震释放应变能高潮与低潮;(b)强震的活动与平静只是相对而言的,没有绝对的活动或平静;(c)微动态期划分较好的体现了强震活动特征,每个微动态期内至少有一个高潮期,且强震集中在一个主体地区内发生,各搬动态期的能量可以有起伏。通过进一步的讨论和分析,提出中国大陆地壳变形主要受三方面因素的控制:(1)印度板块、太平洋板块和菲律宾板块的活动及其变化控制中国强震活动图像的总体格局;(2)大陆地壳结构的非均匀性及其变化影响了主体地区的形态结构;(3)地壳形变的继承性影响强震活动主体地区形成与变迁的过程。  相似文献   

2.
本文从实验角度探讨了印度洋板块边界力的不同作用方式对欧亚大陆应力场的影响。结果表明,印度洋板块带主动性的向北顶撞是造成我国西部及邻区强震三角域分布的直接原因,随边界力的作用方式由正北向北东方向偏转,大陆内部相对应力集中区条带也随之向东偏移。  相似文献   

3.
中国大陆强震活动时空特征分析   总被引:1,自引:0,他引:1  
邵志刚  马宏生  李志雄  张国民 《地震》2009,29(4):98-106
本文在以往研究的基础上分析中国大陆强震活动的时空特征, 以中国大陆1901年以来7级及其以上强震年频次为样本, 采用最优分割将中国大陆地震活动状态分为三种时段: 少发段、 平均段和频发段。 中国大陆强震时间活动呈现非稳态现象, 强震频发段间存在短期的地震平静, 由强震平均段到频发段过渡期间同样存在强震少发段, 而少发段也有7级以上强震发生。 以此为基础结合中国大陆活动地块边界带, 研究不同强震丛发时段前地震活动的空间分布特点以及强震丛发时段的主体活动地区。 研究结果表明, 1901年以来中国大陆强震活动总体来讲, 1955年前后表现出不同的空间特征: 1955年之前强震活动主体区域为中国西部及周边大三角地区的三条边界; 1955年之后强震活动主体区域为华北地区、 巴颜喀拉地块区及南北地震带南段地区。 不同相邻强震丛发时段的主体活动地区有一定的交替性, 少发时段或增多时段的强震往往是上一个丛发时段的主体区内强震活动的延续, 或者发生在下一个强震主体活动区内或周边地区。  相似文献   

4.
地震活动主体地区指在一定时期内,中国大陆及邻区强震活动相对集中发生的地区,时间尺度为几年,十几年或更长.一些作者的研究揭示了地震的成从性和成组性,不同历史时期地震主体活动地区不同.研究表明地震的成组性与大陆地壳的成块性的关联.  相似文献   

5.
李献智 《内陆地震》1995,9(1):43-48
中国大陆及其邻区强震(Ms≥7.0)活动主体地区有由西向东逐步迁移的现象,这将有助于研究中国大陆的地震动力学和预测强震活动的区域。  相似文献   

6.
刘鎏  魏东平 《地震学报》2012,34(6):727-740
中国大陆位于欧亚板块的东南部, 受到印度板块、太平洋板块和菲律宾海板块的碰撞挤压与俯冲作用, 其构造应力场形态和动力学机制相当复杂. 本文采用伪三维有限元方法, 以世界应力图2008年版本数据(WSM2008)的应力方向和应力型两类指标作为主要约束, 对中国大陆及邻区的动力驱动机制进行数值模拟, 给出了中国大陆周边地区板块边界力的大小和方向估计. 同时对3个典型情况的数值模型进行了分析. 结果显示, 软流层静压推力对该区域构造应力场影响相对较小, 板块边界力作用则起主导作用; 印度板块在喜马拉雅造山带对欧亚板块的碰撞控制了中国大陆地区应力场的基本形态, 是形成川滇地区走滑型地震为主的重要原因; 琉球海沟——南海海槽俯冲带边界力显示了挤压-张性的分段特性, 贝加尔裂谷表现为拉张作用. 进一步的分析表明, 中国大陆大部分区域内最大水平剪应力分布图像与该地区地震辐射能量密度的分布存在较好的空间正相关性.   相似文献   

7.
中国大陆强震有成组活动、远距离跳迁和不同时段形成主体活动地区的特征.本文利用强震发生位置处单元降刚法,对中国大陆地区强震的远距离跳迁和主体活动地区转移机理进行了数值模拟研究.得出的新认识是:(1)在地壳中存在初始应力场的环境中,已发生强震区部分丧失承载能力(模拟中作为显著降低单元组的弹性模量来处理),可以引起大范围兆帕量级的应力场调整,它是后续强震可远距离跳迁的主要因素;(2)一个活动期中,中国大陆强震主体活动地区及其迁移,受主要活动断层分布、初始应力场和边界载荷的配置方式的综合影响,但在十年左右的活动幕中,边界载荷的配置方式可能是控制主体活动地区及主体活动地区转移的重要因素.  相似文献   

8.
中国大陆强震区的形成及其动力学分析   总被引:2,自引:0,他引:2       下载免费PDF全文
根据强震能量密度分布图对中国大陆强震区进行分析 ,运用三维黏弹性有限元模拟研究在印度次大陆的长期推挤作用下中国及其邻区的黏弹性变形场与应力场。中国大陆强震区主要是在3方面的动力作用下形成的 :1)印度次大陆长距离的挤入使碰撞带 2犄角的变形不断延伸 ,形成两侧的变形梯度带 ,高原巨厚地壳为弹性应力能的集中创造了介质条件 ,处于较大深度和较高温度下的下地壳的蠕变使上部弹性层的应力集中。 2 )亚洲东部大尺度向E运移使印度板块向NNE的挤入在青藏高原北部转为NE向运动 ,同时也使两侧变形带由NNE转为NE向。 3)高原内部的不均匀挤出促进了高原东侧 3个弧形带的形成  相似文献   

9.
2001年以来全球8级地震呈现新的活跃态势, 7.5级以上强震在空间上呈优势分布, 强震相对集中在西太平洋地震带和欧亚地震带, 印度—澳大利亚板块的汇聚边界带上尤为突出。 2009年全球发生20次7级以上强震, 其中有15次发生在印度—澳大利亚板块, 近期仍具有延续全球强震活动优势空间分布。 本文在以往关于印度—澳大利亚板块运动方式以及相关地震活动研究基础上, 将印度—澳大利亚板块分为印度亚板块和澳大利亚板块, 依据强震应变释放资料分析中国大陆西部、 印度板块边界和澳大利亚板块边界之间强震活动可能的相关性。 结果表明, 中国大陆西部地区与印度板块边界的强震活动有较好的相关性, 印度板块边界与澳大利亚板块边界活动也有一定的相关性。 1914—1993年时段的中国大陆西部地区5个完整强震释放时段与印度板块地震活动表现出很强的相关性, 且中国大陆西部地区强震活动相对印度板块边界地区滞后0~5年, 这对于中国大陆地区强震趋势跟踪具有一定的参考意义。  相似文献   

10.
对近代中国大陆及其邻区板内浅源强震空间分布的大尺度不均匀性进行研究,得出:(1)该区存在4个主要的高地震活动区,即华北地震区(30°~42°N)、东南沿海地震区(19°~25°N)、南北地震区(缅甸—中国—蒙古)和中亚地震区(帕米尔—天山—贝加尔湖);(2)这4个地震区与该区周围板块(欧亚板块与北美—太平洋—菲律宾海—印度板块)之间边界上地震耦合强度大的段落大致垂直;(3)作用于板块边界不同段落上的应力水平差异,可能是中国大陆及其邻区板内近代大尺度强震活动空间分布不均匀性的控制因素  相似文献   

11.
IntroductionInrecent2oyears,throughstudiesofthegreatearthquakesoftheChinesemainlandanditSvicinitysincel9OO,itiswidelyrecognizedthattheseeventSoccurredinsomeregionsinarelativelyconcentratingmannerfordifferentperiods(Ma,Zhang,l986;Zhang,etal,l994,Hong,l994;Hong,elal,l997;Huang,Dong,l997).Inthispapef,wecallthemmajorregionsofgreatearthquakesincertaintime,ormajorregionsinshort.Themajorregionsofdifferentperiodscanmigratethroughlongdistanceinspace.Thegeneralpatternofthegreatearthquakedistributio…  相似文献   

12.
阿尔金地区构造应力场研究   总被引:2,自引:0,他引:2  
范芳琴 《内陆地震》1993,7(4):370-378
用软材料和激光全息光弹模拟实验方法,分析了阿尔金地区现代构造应力场的特征和在区域应力场作用下阿尔金断层的活动规律以及大震前后震区应力场的调整情况,结果表明:阿尔金地区现今构造应力场主压应力轴近南北向,南边印度板块向北推进的过程中,使得青藏高原西北边界的阿尔金断裂各段的活动性质和滑移速度不同。东西两段左旋位移较明显;中段呈明显压性;应力集中区分布在一些特殊构造部位。模拟大震应力释放反映,大震后震中区附近剪应力值迅速下降,周围一些地区的剪应力值升高,形成未来地震危险区。  相似文献   

13.
The two-dimensional surface deformation, gravity field and geoid are calculated from the temperature fields of a number of numerical models of constant viscosity three-dimensional convective flows, heated from within and from below, using the appropriate Green's functions. The admittance is positive, with positive gravity anomalies above hot rising regions, except for large aspect ratio circulations with undeformable lower boundaries. The surface deformation and the geoid are insensitive to the short wavelength features of the temperature variation. The gravity field is less smooth, though still does not clearly indicate the narrowness of the upwelling and downwelling regions at large Rayleigh numbers. When the lower boundary of the convecting region is deformable, the gravity field is dominated by lateral temperature variations within the upper thermal boundary layer, even when their contribution to the overall circulation is small. The variation of surface deformation with Rayleigh number agrees well with that expected from simple boundary layer arguments when the circulation is driven by heating from below, but less well when the heating is internal. These results suggest that the convective upwelling beneath regions showing positive geoid and residual depth anomalies is more localized than the horizontal extent of these features would suggest.  相似文献   

14.
Introduction The northeast margin of Qinghai-Xizang block has become the place with close attentions from geo-specialists at home and abroad for its significant tectonic movement and intensive seismicity. Quite a number of achievements have been obtained from the studies on geological structures and strong earthquake activities (DING, LU, 1989, 1991; GUO, et al, 1992, 2000; GUO, XIANG, 1993; HOU, et al, 1999; Tapponnier, et al, 1990; Gaudemer, et al, 1995). In the Development Program…  相似文献   

15.
We obtain the preliminary result of crustal deformation velocity field for the Chinese con-tinent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We de-lineate 9 tectonically active blocks and 2 broadly distributed deformation zones out of a denseGPS velocity field, and derive block motion Euler poles for the blocks and their relative motionrates. Our result reveals that there are 3 categories of deformation patterns in the Chinese conti-nent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan oro-genic belt, shows broadly distributed deformation within the regions. The third category, associatedwith the Tarim Basin and the region east of the north-south seismic belt of China, shows block-likemotion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining(in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has thedeformation pattern between the first and the third, i.e. these regions appear to deform block-like,but with smaller sizes and less strength for the blocks. Based on the analysis of the lithosphericstructures and the deformation patterns of the regions above, we come to the inference that thedeformation modes of the Chinese continental crust are mainly controlled by the crustal structure.The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformationtakes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

16.
We obtain the preliminary result of crustal deformation velocity field for the Chinese continent by analyzing GPS data from the Crustal Motion Observation Network of China (CMONOC), particularly the data from the regional networks of CMONOC observed in 1999 and 2001. We delineate 9 technically active blocks and 2 broadly distributed deformation zones out of a dense GPS velocity field, and derive block motion Euler poles for the blocks and their relative motion rates. Our result reveals that there are 3 categories of deformation patterns in the Chinese continent. The first category, associated with the interior of the Tibetan Plateau and the Tianshan orogenic belt, shows broadly distributed deformation within the regions. The third category, associated with the Tarim Basin and the region east of the north-south seismic belt of China, shows block-like motion, with deformation accommodated along the block boundaries only. The second category, mainly associated with the borderland of the Tibetan Plateau, such as the Qaidam, Qilian, Xining (in eastern Qinghai), and the Diamond-shaped (in western Sichuan and Yunnan) blocks, has the deformation pattern between the first and the third, i.e. these regions appear to deform block-like, but with smaller sizes and less strength for the blocks. Based on the analysis of the lithospheric structures and the deformation patterns of the regions above, we come to the inference that the deformation modes of the Chinese continental crust are mainly controlled by the crustal structure. The crust of the eastern China and the Tarim Basin is mechanically strong, and its deformation takes the form of relative motion between rigid blocks. On the other hand, the northward indentation of the Indian plate into the Asia continent has created the uplift of the Tibetan Plateau and the Tianshan Mountains, thickened their crust, and raised the temperature in the crust. The lower crust thus has become ductile, evidenced in low seismic velocity and high electric conductivity observed. The brittle part of the crust, driven by the visco-plastic flow of the lower crust, deforms extensively at all scales. The regions of the second category located at the borderland of the Tibetan Plateau are at the transition zone between the regions of the first and the third categories in terms of the crustal structure. Driven by the lateral boundary forces, their deformation style is also between the two, in the form of block motion and deformation with smaller blocks and less internal strength.  相似文献   

17.
INTRODUCTIONThe vector diagramof the crustal horizontal movement of the north margin of Qinghai-Xizang(Tibet) block obtained from GPS measurements of 2001 ~2003 shows that the western part of theregion presents a southwestward movement oppositetothetrend beforethe Nov.14 ,2001 west KunlunMountains PassMS8 .1 earthquake ,which mayreflectthe post-earthquake relaxationand adjustment ofthe region (Zhang Xi ,2004) .It was the variation of regional dynamics that led to instability of thepo…  相似文献   

18.
柳畅  石耀霖  郑亮  朱伯靖 《地球物理学报》2012,55(12):3942-3957
华北盆地为我国板内地震多发区域,历史以来相继发生多次破坏性大地震.前人地震勘探与震源定位结果揭示了华北地震的空间分布特征:横向上,华北地震基本发生在地壳的薄弱地带(Moho面上隆),或者地壳厚度的急剧变化带;纵向上,华北地震在地壳一定深度范围内呈现成层分布特征;主震一般在上地壳底部9~15 km深度范围,余震多发生在大约深5~25 km的上地壳与中地壳范围内,在中地壳下层与下地壳中仅有少量或者鲜见有余震发生.为研究解释华北盆地地震空间分布的以上特征,本文建立了华北盆地岩石圈三维黏弹性有限元模型.震源机制和GPS反映华北盆地处于NNE最大主压应力方向挤压,因此对模型边界施以恒定的位移速率边界条件;数值模拟华北岩石圈各层位在数百年以上长期匀速构造挤压作用下的应力积累特征,分析了华北地震空间分布与构造应力积累速率的关系,探讨了地壳结构与地壳分层流变性质对地壳应力积累的影响.计算结果表明,Moho面的隆起与地壳各层位岩石介质的黏滞系数是华北盆地地震孕育的重要因素.华北盆地在构造挤压的持续作用下,Moho面隆起处产生明显应力集中现象.该区域应力在长时期的积累过程中,在脆性的上地壳与中地壳上层,应力表现近于线性增长趋势,上地壳底部较其它深度有最大的应力增长率,其主震可以在应力积累至岩石破裂强度时发生;在脆、韧性转换的中地壳下层,应力增长速率次之,华北地震的大部分余震可能在该层位为主震所触发;而在柔性的下地壳应力增长近于指数形式,稳定状态之后其应力增长速率近于零,而鲜有地震发生.地壳各层位的应力增长率差异与地震成层分布的现象揭示了华北地壳的分层流变性质:脆性(上地壳)-较弱脆性(中地壳上层)-较弱韧性(中地壳下层)-较强韧性(下地壳)-韧性(岩石圈上地幔)的分层流变结构.  相似文献   

19.
Instrumental measurements of geophysical fields in several regions of the Earth’s crust with a complex structure and tectonics are analyzed. The observed geophysical fields include the electric field in the boundary layer of the atmosphere and in the subsurface crust, the ground magnetic field, and the fields formed by microseismic vibrations and natural radon emanation. It is shown that the fault zones are characterized by noticeably higher (compared to the middle segments of crustal blocks) variations in the geophysical fields, a stronger response to the faint external impacts in the form of lunisolar tides, and baric variations in the atmosphere, as well as by higher intensity relaxation processes. Energy transformations between the geophysical fields of different origins are observed predominantly in the fault regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号