首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Marine transgression in Younger Dryas in Norway   总被引:1,自引:0,他引:1  
BOREAS Anundsen, K. 1978 03 01: Marine transgression in Younger Dryas in Norway. Boreas, Vol. 7, pp. 49–60. Oslo. ISSN 0300–9483.
The lithostratigraphy and biostratigraphy of sediment cores from two basins in southwestern Norway have been studied and radiocarbon dated. The diatom and the Hystrix content indicates a marine Younger Dryas transgression that reached its maximum level at the transition Younger Dryas/Preboreal Chronozone. No Allerød transgression to the same altitude can be demonstrated, and the suggested Allerød transgression at Bømlo (Faegri 1944) is most likely of Younger Dryas age, too.  相似文献   

2.
End moraines (called the Herdla Moraines) from the Younger Dryas Stadial arc morphologically mapped along the western coast of Norway, from Hardangerfjorden to north of Sognefjorden. The submarine position of the moraines are found by means of a conventional echo sounder. Stratigraphieal studies with many C14 datings are used for age determination, giving Late Younger Dryas (10,000–10,500 C14 years B.P.) for the Herdla Moraines. The moraines are correlated with the Ra-Salpausselkä Moraines. Isobases for the Younger Dryas are obtained from marine terraces formed contemporaneously with the moraines.  相似文献   

3.
The depositional history of an ice-contact delta in Sørfjorden has been reconstructed, based on two sections, 100 and 900 m long. Five major sedimentary facies have been distinguished within the delta's foreset, and their geometry and spatial organization have been mapped in the outcrops through the use of photographs. Facies 1 comprises chaotically bedded coarse clastics; facies 2 comprises sets of high-angle clinoforms; facies 3 comprises sets of low-angle sandy clinoforms; facies 4 comprises sets of hummocky sandy clinoforms and facies 5 comprises sets of low-angle to subhorizontal sandy and muddy clinoforms. The glacier advanced at least 500 m during the formation of the foreset sequence. Six minor halts during this advance are indicated. The study puts new constraints on the history of the Younger Dryas ice advance in the region, including local palaeogeography, ice-front dynamics and fjord-fill sediment stratigraphy.  相似文献   

4.
Sediments from two small lakes distal to the Tromsø–Lyngen moraine at Tromsø, northern Norway, indicate that the area was deglaciated prior to c. 11.7 14C ka BP. The earliest vegetation was dominated by calciphilous and heliophilous pioneer plants on unstable soils; this changed to a vegetation reflecting a dry continental climate until c. 10.7 14Cka BP. A phase (10.7–10.5 14Cka BP) with snow-bed communities was followed by one with a mosaic of plant communities. This was succeeded by Empetrum heaths c. 10.3 14Cka BP, then by an open forest with Betula pubescens after 10.0 14Cka BP. Ice-front oscillations in the Tromsø area are evaluated. The main part of the Younger Dryas glacial readvance, the Tromsø–Lyngen event, probably occurred between 10.7 and 10.3 14Cka BP.  相似文献   

5.
Younger Dryas事件与北黄海泥炭层的形成   总被引:1,自引:0,他引:1  
形成于海平面变化处于停滞阶段和湿润气候条件下的泥炭层是古环境变化信息的重要载体。对北黄海4个含泥炭层的沉积剖面进行研究后发现,其均集中在渤海海峡入口处,水深变化在50~54m。泥炭层的AMS14C年龄在10650~1010014 CaBP,与发生在11000~1000014 CaBP间的末次冰消气候回冷事件——Younger Dryas(YD)事件在年代上非常吻合,表明北黄海泥炭层的形成可能与YD事件的全球效应密切相关,可作为YD事件在北黄海陆架响应的一个重要证据。泥炭层在北黄海的集中出现说明,冰后期的海平面上升过程中在YD事件期间存在停滞阶段,这一时期海面已经达到渤海海峡外侧,并可能在此徘徊了近千年。此外,泥炭层的大量出现和孢粉记录表明YD事件发生期间约为10600~1020014 CaBP,此时北黄海可能处在寒冷而湿润的环境。这一发现与全球范围内大部分YD事件的海陆记录存在明显差异,说明不同地区对YD事件的响应存在差异,不能简单地利用单一的干冷模式来分析YD事件在区域上的响应特征和过程。  相似文献   

6.
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales.  相似文献   

7.
Three localities with marginal moraines deposited by former cirque glaciers are investigated in east-central southern Norway. The wet-based (erosive) cirque glaciers with aspects towards S-SW and N-NE are mapped at altitudes above 1100 m, and have a mean equilibrium-line altitude of 1275 m. With a suggested mean annual winter precipitation close to the average for the modern accumulation season (1 October-30 April) when the cirque glaciers existed, the mean air-temperature depression during the ablation season (1 May-30 September) is calculated to be 6–7°C lower than at present. The high-altitude cirques of central Rondane were still covered by ice when the low-altitude cirque glaciers developed in distal position for this massif in eastern Rondane and on isolated mountains. Hence, the cirque glaciers are suggested to have existed during the deglaciation after the Late Weichselian maximum, and most likely during the Younger Dryas (11000–10000 BP). The cirque glaciers indicate a downwasting ice-sheet surface well below an altitude of 1100 m prior to the Younger Dryas, and this supports a limited (small) vertical extent for the Late Weichselian ice sheet in this region. With the contemporaneous level for instantaneous glacierization (glaciation threshold) just below the highest elevated peaks in east-central southern Norway, this fits with the idea of a continuous downwasting of the Late Weichselian ice sheet since the 'first' nunataks appeared. The occurrence of the cirque glaciers indicates a multidomed Scandinavian ice-sheet geometry during the Late Weichselian.  相似文献   

8.
Few well‐dated records of the deglacial dynamics of the large palaeo‐ice streams of the major Northern Hemisphere ice sheets are presently available, a prerequisite for an improved understanding of the ice‐sheet response to the climate warming of this period. Here we present a transect of gravity‐core samples through Trænadjupet and Vestfjorden, northern Norway, the location of the Trænadjupet – Vestfjorden palaeo‐ice stream of the NW sector of the Fennoscandian Ice Sheet. Initial ice recession from the shelf break to the coastal area (~400 km) occurred at an average rate of about 195 m a−1, followed by two ice re‐advances, at 16.6–16.4 ka BP (the Røst re‐advance) and at 15.8–15.6 ka BP (the Værøy re‐advance), the former at an estimated ice‐advance rate of 216 m a−1. The Røst re‐advance has been interpreted to be part of a climatically induced regional cold spell while the Værøy re‐advance was restricted to the Vestfjorden area and possibly formed as a consequence of internal ice‐sheet dynamics. Younger increases in IRD content have been correlated to the Skarpnes (Bølling – Older Dryas) and Tromsø – Lyngen (Younger Dryas) Events. Overall, the decaying Vestfjorden palaeo‐ice stream responded to the climatic fluctuations of this period but ice response due to internal reorganization is also suggested. Separating the two is important when evaluating the climatic response of the ice stream. As demonstrated here, the latter may be identified using a regional approach involving the study of several palaeo‐ice streams. The retreat rates reported here are of the same order of magnitude as rates reported for ice streams of the southern part of the Fennoscandian Ice Sheet, implying no latitudinal differences in ice response and retreat rate for this ~1000 km2 sector of the Fennoscandian Ice Sheet (~60–68°N) during the climate warming of this period.  相似文献   

9.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

10.
11.
12.
The Kregnes “moraine” ridge in Gauldalen, a north-trending valley south of Trondheim, is a Gilbert-type delta formed at a Younger Dryas glacier terminus. The gravelly delta consists of a north-dipping foreset, 150 m thick, comprised of turbidites, debrisflow beds and debrisfall deposits. The bottomset consists of turbiditic sand and mud layers. The topset, 2-3 m thick, is a braided-river alluvium with local beach deposits, matching the marine limit of 175 m a.s.l. The fjord-wide delta front had an extent of 3 km and prograded over a distance of 1.5 km, in probably less than 100 years, with the delta toe climbing by 50 m against the basin's rapidly aggrading muddy floor. The delta advanced through the alternating episodes of its toe aggradation and progradation, related to the increases and decreases of the delta-slope gradient. Slope steepening led to intense sediment sloughing by chutes and occasional large-scale failures. The fjord's wave fetch was low and the wave base no deeper than 1.5-2 m, but strong storm waves occasionally reworked the delta front to a depth of 6 m. Glacitectonic deformation was limited to the system's upfjord end. Allostratigraphic analysis suggests that the proglacial system commenced its development as an ice-contact submarine fan that was deformed, quickly aggraded to the sea surface and turned into an ice-contact delta, which further evolved into the large glaciofluvial delta. The Kregnes ridge represents an episode of the ice-front re-advance due to climatic deterioration and is tentatively correlated with the Hoklingen substage.  相似文献   

13.
《Quaternary Science Reviews》2007,26(17-18):2128-2151
After the first emergence following deglaciation, relative sea level rose by 10 m in western Norway and culminated late in the Younger Dryas (YD). The relative sea-level history, reconstructed by dating deposits in isolation basins, shows a sea-level low-stand between ∼13 640 and 13 080 cal yr BP, a 10 m sea-level rise between ∼13 080 and 11 790 cal yr BP and a sea-level high-stand between ∼11 790 and 11 550 cal yr BP. Shortly after the YD/Holocene boundary, sea level fell abruptly by ∼37 m. The shorelines formed during the sea-level low-stand in the mid-Allerød and during the sea-level high-stand in the YD have almost parallel tilts with a gradient of ∼1.3 m km−1, indicating that hardly any isostatic movement has taken place during this period of sea-level rise. We conclude that the transgression was caused by the major re-advance of the Scandinavian Ice Sheet that took place in western Norway during the Lateglacial. The extra ice load halted the isostatic uplift and elevated the geoid due to the increased gravitational attraction on the sea. Our results show that the crust responded to the increased load well before the YD (starting ∼12 900 cal yr BP), with a sea-level low-stand at 13 640 cal yr BP and the subsequent YD transgression starting at 13 080 cal yr BP. Thus, we conclude that the so-called YD ice-sheet advance in western Norway started during the Allerød, possibly more than 600 years before the Allerød/YD transition.  相似文献   

14.
A well-dated δ18O record in a stalagmite from a cave in the Klamath Mountains, Oregon, with a sampling interval of 50 yr, indicates that the climate of this region cooled essentially synchronously with Younger Dryas climate change elsewhere in the Northern Hemisphere. The δ18O record also indicates significant century-scale temperature variability during the early Holocene. The δ13C record suggests increasing biomass over the cave through the last deglaciation, with century-scale variability but with little detectable response of vegetation to Younger Dryas cooling.  相似文献   

15.
Lake-level fluctuations in the Jura mountains (France) during the Younger Dryas and the early Holocene are reconstructed using sedimentological analyses. Major transgressive phases culminated just before the Laacher See tephra deposition, at the beginning of the Younger Dryas, between 9000 and 8000 BP and between 7000 and 6000 BP. The Younger Dryas appears to be characterized by increasing dryness. Other major lowering phases occurred during the middle Allerød and during the Preboreal. A transgressive event developed between c . 9700 and 9500 BP. These palaeohydrological changes can be related to climatic oscillations reconstructed from pollen and isotopic records in Swiss lakes, from glacier movements and timberline variations in the Alps, and from isotopic records in the Greenland ice sheet.  相似文献   

16.
Streamlined subglacial landforms that include drumlins in three study areas, the upper Chandra valley around Chandra Tal, the upper Spiti Valley and the middle Yunam Valley of the NW Himalaya of India were mapped and studied using geomorphic, sedimentological and geochronological methods. These streamlined subglacial landforms include a variety of morphological types, including: (i) half egg‐shaped forms; (ii) complex superimposed forms; (iii) dome‐shaped forms; (iv) inverse forms; and (v) flat‐topped symmetrical forms. Sedimentological data indicate that subglacial deformational processes are responsible for the formation of the streamlined subglacial landforms in the Chandra Tal and upper Spiti Valley study areas. In contrast, streamlined landforms in the middle Yunam Valley are the result of melt‐out and subglacial erosional processes. In the Yunam Valley study area, 11 new cosmogenic 10Be surface exposure ages were obtained for boulders inset into the crests of streamlined subglacial landforms and moraines, and also for a bedrock surface. The streamlined landforms date to 8–7 ka, providing evidence of an early Holocene valley glaciation, and older moraines date to ~17–15 and 79–52 ka, representing other significant valley glacial advances in the middle Yunam Valley. The subglacial landforms in the Chandra Valley provide evidence for a ≥300‐m‐thick Lateglacial glacier that advanced southeast, overtopping the Kunzum Range, and advancing into the upper Spiti Valley. The streamlined subglacial landforms in these study areas of the NW Himalaya highlight the usefulness of such landforms in developing glacial chronostratigraphy and for understanding the dynamics of Himalayan glaciation.  相似文献   

17.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Geomorphological mapping has identified the former existence of five cirque glaciers that formed during the Loch Lomond Stadial in the western Pennines, northern England. Landforms in Mallerstang, which previously have been interpreted as moraine ridges, are shown to be better explained as large complex landslides. Reconstruction of these former glaciers has allowed the calculation of the former equilibrium line altitudes (ELA) by a number of different methods. Values for the ELA show a range across the area from 311 m to 608 m OD, but with low values (311 m and 428 m) for the two western glaciers. These are explained by the existence of large plateau areas adjacent to the former glaciers, which contributed additional mass to the glaciers by snowblow on to the glacier surfaces. Delimitation of the potential snowblow area for each glacier shows that it has a distinct orientation, with the western sector (225–315°) being statistically significant with the ELA indicating the importance of winds from this direction in determining the existence of these palaeoglaciers. The significance of snowblow for the generation of small glaciers in marginal areas means that such local factors must be investigated before regional firn line trends are determined in former glaciated areas.  相似文献   

19.
A bed of volcanic ash up to 23 cm thick is found in lacustrine and marine sediments in western Norway. It is formally mamed the Vedde Ash Bed, and its age is approximately 10,600 yr B.P., i.e., mid-Younger Dryas. The bed consits of pure glass having a bimodal basaltic and rhyolitic somposition. The geochemistry of the glass shards suggests an Icelandic source. By means of stratigraphic position and geochemistry, the ash is correlated with ash zones found in cores from the continental shelf, the Norwegian Sea, and the North Atlatic.  相似文献   

20.
Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号