首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. L. PORTER 《Sedimentology》1987,34(4):661-680
The Lower Jurassic Aztec Sandstone is an aeolian-deposited quartzose sandstone that represents the western margin of the southerly-migrating Navajo-Nugget sand sea (or erg). Vertical and lateral facies relations suggest that the erg margin encroached upon volcanic highlands, alluvial fan, wadi and sabkha environments. In southern Nevada, 700 m thick facies successions record the arrival of the Aztec sand sea. Initial erg sedimentation in the Valley of Fire consists of lenticular or tongue-shaped aeolian sand bodies interstratified with fluvially-deposited coarse sandstone and mudstone. Above, evaporite-rich fine sandstone and mudstone are overlain by thick, cross-stratified aeolian sandstone that shows an upsection increase in set thickness. The lithofacies succession represents aeolian sand sheets and small dunes that migrated over a siliciclastic sabkha traversed by ephemeral wadis. These deposits were ultimately buried by large dunes and draas of the erg. In the Spring Mountains, a similar facies succession also contains thin, lenticular volcaniclastic conglomerate and sandstone. These sediments represent the distal margin of an alluvial fan complex sourced from the west. Thin aeolian sequences are interbedded with volcanic flow rocks, ash-flow tuffs, debris flows, and fluvial deposits in the Mojave Desert of southern California. These aeolian strata represent erg migration up the eastern flanks of a magmatic arc. The westward diminution of aeolian-deposited units may reflect incomplete erg migration, thin accumulation of aeolian sediment succeptible to erosion, and stratigraphic dilution by arc-derived sediment. A two-part division of the Aztec erg is suggested by lithofacies associations, the size and geometry of aeolian cross-strata, and sediment dispersal data. The leading or downwind margin of the erg, here termed the fore-erg, is represented by a 10–100 m thick succession of isolated pods, lenses, and tongues of aeolian-deposited sediment encased in fluvial and sabkha deposits. Continued sand-sea migration brought large dunes and draas of the erg interior into the study area; these 150–500 m thick central-erg sediments buried the fore-erg deposits. The trailing, upwind margin of the erg is represented by back-erg deposits in northern Utah and Wyoming.  相似文献   

2.
The Late Proterozoic Bakoye 3 Formation is a predominantly aeolian unit deposited in the glacially influenced cratonic Taoudeni Basin of western Africa. The Bakoye 3 can be divided into five distal units, two proximal units, and a local upper massive sandstone. The basal Unit 1 shows a complex interfingering of aeolian and subaqueous structures, and is interpreted as the precursor of the overlying erg sequences. Unit 2 consists of compound, trough cosets of aeolian cross-strata dominated by grain-flow strata. The unit is interpreted to represent draas with superimposed, small, crescentic dunes. A super bounding surface marks the termination and planation of the erg. Unit 3 is distinguished from the underlying Unit 2 by its larger, overall simple sets of trough cross-strata, interpreted to represent simple, large, crescentic dunes. Unit 4 occurs only locally in laterally discontinuous, large troughs. In one case the trough is filled by small sets of tabular cross-strata dominated by grain-flow deposits. At another section, wedges of coarse-grained wind-ripple strata fill the trough. Unit 4 may represent remnants of ergs or, more likely, local deposition in depressions. The depressions, in the latter scenario, formed with the development of a second super surface that truncates Unit 3. Unit 5 consists of very large sets of wind-ripple cross-strata with less common sets of grain-flow deposits. These deposits are believed to represent enormous dunes with large plinths and subordinate slip face development. A third super surface separates Unit 5 from overlying marine deposits. Together, Units 1–5 represent the core of the ergs in a distal position relative to adjacent upland source areas. Proximally, aeolian deposits are simple, smaller, trough sets interpreted as moderate sized crescentic dunes. Coarse-grained braided stream deposits are prominent. Locally, the top of the Bakoye 3 is marked by channelized mass-flow deposits containing aeolian blocks, and is believed to have resulted from iceberg grounding. An overall environment for the Bakoye 3 is one of uplands marked by ice sheets, with outwash plains extending distally to aeolian ergs. Super surfaces, all marked by polygonal fractures and coarsegrained sediment, represent periods of erg termination that may be linked to glacial-fluvial-aeolian cycles.  相似文献   

3.
Surveyed outcrops of the Middle Jurassic Entrada Sandstone at Ghost Ranch, New Mexico, show the unusual occurrence of preserved aeolian dune palaeotopography buried beneath subaqueous strata. The preserved dune remnants have relief up to 35 m, trend NNW, and show internal scalloped cross-strata dipping to the WSW, with small sets occurring as both topsets and bottomsets. Outcrop data are best satisfied in computer models by 50 m high, sinuous bedforms that migrated to the WSW, while the sinuosity migrated alongcrest to the NNW. Superimposed small dunes occurred upon the stoss slope, and at the basal lee of the main bedform where they migrated alongslope to the NNW. Remnant dune palaeotopography is buried by onlapping, subaqueous, largely structureless sandstones believed to be derived by mass wasting of the upper portions of the dunes and deposited as sediment-gravity flows that infilled between the dunes. Preservation of dune palaeotopography beneath mass-flow deposits, with no evidence for gradually rising water, argues that flooding of the Entrada dune field was geologically instantaneous. The thickness and lithology of the overlying Todilto Formation conform to slight remnant palaeotopography on the Entrada surface. The Todilto is a laminated limestone and thinnest over remnant dune crestal areas, but thickens and increases in gypsum content downslope until it abruptly yields to a gypsum mound positioned over a remnant interdune hollow. The Todilto laminations are interpreted as seasonal varves deposited below wave base in a density-stratified water body. The flooding event that gave rise to the controversial Todilto water body occurred during Entrada time, with Todilto deposition occurring within an already substantial water body.  相似文献   

4.
The Lower Cretaceous geological record of the intracratonic Paraná Basin in southern Brazil comprises a thick succession of aeolian sandstones and volcanic rocks. The intercalation between aeolian sandstone and volcanic floods allowed the preservation of distinct aeolian genetic units. Each genetic unit represents an accumulation episode, bounded by supersurfaces, that coincides with the base of lava flood events. The entire package can be subdivided into a Lower Genetic Unit, which corresponds to aeolian sandstones preserved below the initial lava flows (Botucatu Formation), and an upper set of genetic units, which comprises interlayered aeolian deposits and lava floods (Serra Geral Formation). The Lower Genetic Unit is up to 100 m thick. Its base is composed of ephemeral stream and aeolian sand sheet deposits that are overlain by cross‐bedded sandstones whose origin is ascribed to simple, locally composite, crescentic and complex linear aeolian dunes. Aeolian accumulation of the lower unit was possible as a result of the existence of a wide topographic basin, which caused wind deceleration, and a large sand availability that promoted a positive net sediment flux. The Upper Genetic Units comprise isolated sand bodies that occur in two different styles: (1) thin lenses (<3 m thick) formed by aeolian sand sheets; and (2) thick sand lenses (3–15 m) comprising cross‐bedded cosets generated by migration and climbing of simple to locally composite crescentic aeolian dunes. Accumulation of the aeolian strata was associated with wind deceleration within depressions on the irregular upper surface of the lava floods. The interruption of sedimentation in the Lower and Upper Genetic Units, and related development of supersurfaces, occurred as a result of widespread effusions of basaltic lava. Preservation of both wind‐rippled topset deposits of the aeolian dunes and pahoehoe lava imprints indicates that lava floods covered active aeolian dunes and, hence, protected the aeolian deposits from erosion, thus preserving the genetic units.  相似文献   

5.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

6.
GARY KOCUREK 《Sedimentology》1981,28(6):753-780
Bounding surfaces and interdune deposits provide keys for detailed interpretations of the development, shape, type, wavelength and angle of climb of aeolian bedforms, as well as overall sand sea conditions. Current alternate interpretations of bounding surfaces require very different, but testable models for sand sea deposition. Two perpendicular traverses of Jurassic Entrada Sandstone, Utah, reveal relations among cross-strata, first-order bounding surfaces, and horizontal strata. These field relations seem explicable only as the deposits of downwind-migrating, climbing, enclosed interdune basins (horizontal strata) and dune bodies consisting of superimposed smaller crescentic dunes (cross-stratified deposits). A 1.7 km traverse parallel to the palaeowind direction provides a time-transgressive view showing continuous cosets of cross-strata, first-order bounding surfaces and interdune deposits climbing downwind at an angle of a few tenths of a degree. Changes occur in the angle of climb, cross-strata structure, and interdune deposits; these reflect changes in depositional conditions through time. A 1.5 km traverse perpendicular to the palaeowind direction provides a view at an instant in geological time showing first-order bounding surfaces and interdune deposits forming flat, laterally discontinuous lenticular bodies. The distribution of interdune sedimentary structures in this traverse is very similar to that of some modern interdune basins, such as those on Padre Island, Texas. Hierarchies of bounding surfaces in an aeolian deposit reflect the bedform development on an erg. The presence of three orders of bounding surfaces indicates dune bodies consisting of smaller, super-imposed dunes. The geometry of first-order bounding surfaces is a reflection of the shape of the inter-dune basins. Second-order bounding surfaces originate by the migration of the superimposed dunes over the larger dune body and reflect individual dune shape and type. Third-order bounding surfaces are reactivation surfaces showing stages in the advance of individual dunes. The presence of only two orders of bounding surfaces indicates simple dunes. Modern and Entrada interdune deposits show a wide variety of sediment types and structures reflecting deposition under wet, damp, and dry conditions. Interdune deposits are probably the best indicators of overall erg conditions and commonly show complex vertical sequences reflecting changes in specific depositional conditions.  相似文献   

7.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

8.
Aeolian dune fields characterized by partly vegetated bedforms undergoing active construction and with interdune depressions that lie at or close to the water table are widespread on Skei?arársandur, Southern Iceland. The largest aeolian dune complex on the sandur covers an area of 80 km2 and is characterized by four distinct landform types: (i) spatially isolated aeolian dunes; (ii) extensive areas of damp and wet (flooded) interdune flat with small fluvial channels; (iii) small aeolian dune fields composed of assemblages of bedforms with simple morphologies and small, predominantly damp, interdune corridors; and (iv) larger aeolian dune fields composed of assemblages of complex bedforms floored by older aeolian dune deposits that are themselves raised above the level of the surrounding wet sandur plain. The morphology of each of these landform areas reflects a range of styles of interaction between aeolian dune, interdune and fluvial processes that operate coevally on the sandur surface. The geometry, scale, orientation and facies composition of sets of strata in the cores of the aeolian dunes, and their relationship to adjoining interdune strata, have been analysed to explain the temporal behaviour of the dunes in terms of their mode of initiation, construction, pattern of migration, style of accumulation and nature of preservation. Seasonal and longer‐term flooding‐induced changes in water table level have caused episodic expansion and contraction of the wet interdune ponds. Most of the dunes are currently undergoing active construction and migration and, although sediment availability is limited because of the high water table, substantial aeolian transport must occur, especially during winter months when the surface of the wet interdune ponds is frozen and sand can be blown across the sandur without being trapped by surface moisture. Bedforms within the larger dune fields have grown to a size whereby formerly damp interdune flats have been reduced to dry enclosed depressions and dry aeolian system accumulation via bedform climb is ongoing. Despite regional uplift of the proximal sandur surface in response to glacial retreat and unloading over the past century, sediment compaction‐induced subsidence of the distal sandur is progressively placing aeolian deposits below the water table and is enabling the accumulation of wet aeolian systems and increasing the likelihood of their long‐term preservation. Wet, dry and stabilizing aeolian system types all co‐exist on Skei?arársandur and the dunes are variously undergoing coeval construction, accumulation, bypass, stabilization and destruction as a result of interactions between localized factors.  相似文献   

9.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

10.
11.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

12.
The Algodones dune field of southeastern California is one of the largest active dune fields in North America. The dune field is migrating in an easterly direction, oblique to the resultant sand flow direction (S 24° E). The migration of the Algodones results from an interaction between regional winds and the dune field. This interaction generates a localized secondary flow that has caused the dune field to migrate in a direction oblique to the resultant sand flow direction. Four lines of evidence suggest that the Algodones has migrated in an easterly direction: (1) A ramp, interpreted as the trailing edge of the dune field, 35 m thick and 500 m wide composed of aeolian deposits that borders the western edge of the dune field. No similar deposits are found on the eastern (leading edge) margin of the dune field. (2) Leading-edge sand-sheet deposits are exposed in interdune areas within the dune field. These deposits are west of the modern leading-edge sand sheet. (3) Across the breadth of the dune field sands are consistently coarser and more poorly sorted in the west and finer and better sorted in the east. This observation suggests that sand is transported from west to east. (4) Eastward migration of a large compound-complex crescentic dune. If the dune field continues to migrate it will deposit a vertical sequence consisting of: a basal sand-sheet deposit consisting of wind and water-ripple laminae, small-scale aeolian cross-strata, and ephemeral stream (wadi) deposits; aeolian dune deposits consisting of medium-scale aeolian compound cross-strata; small-scale simple sets of aeolian cross-strata with highly variable dip directions; a sand sheet containing low-angle wind-ripple cross-strata capped by a coarse sand lag super bounding surface.  相似文献   

13.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

14.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

15.
FIKRY KHALAF 《Sedimentology》1989,36(2):253-271
Several types of aeolian deposits have been recognized in Kuwait: (a) smooth sand sheets that resemble desert floor sand, (b) immobile sands that include rugged vegetated sand sheets and wadi fill deposits, and (c) mobile sands that form active sand sheets and sand dunes. Simple size frequency curves illustrate the genetic relationship between the various aeolian sediment types. The four size parameters, namely, mean size, sorting, skewness and kurtosis, were calculated. Scatter plot diagrams of sorting versus mean size and sorting versus kurtosis are effective in differentiating smooth sand sheet deposits from dune sands. Active sand sheet deposits can also be recognized because they are usually located between the two end members–smooth sand sheets and dune sands. Size parameters change with location regardless of their types. Coarsening and positive skewness usually increase downwind. Mineralogical and textural characteristics of the aeolian deposits in Kuwait revealed that they are mostly derived from the lower Mesopotamian muddy flood plain deposits, the sand fraction of the Al-Dibdibba gravelly deposits and the disintegrated material from calcretic and gypcretic duricrusts. Distribution of depositional and deflational areas indicates that the northern desert of Kuwait is characterized by a positive sand budget, whereas the southern desert has a negative sand budget.  相似文献   

16.
ABSTRACT Permian aeolian sediments on the island of Arran are divisible into dune (including draa) and interdune deposits. Both types display a distinctive and unusually wide variation in grain size. The dominant features of the dune deposits are grainfall lamination, sandflow lamination, and inverse graded lamination associated with ripple-form lamination and normal graded lamination. The flat-lying aeolian interdune deposits are characterised by granule and sand ripples, horizontal lamination in coarse sand and granules, plane bed lamination and inverse graded lamination. Associated structures include ripple-form lamination and deflation lags. Three types of trace fossil associated with completely bioturbated horizons occur in some low-angle dune and interdune deposits.
The aeolian facies interfinger with alluvial fan deposits giving rise to three recognizable facies belts. Marginal aeolian deposits are associated with fluvial conglomerates and are dominated by interdune deposits and occasionally very thin barchan deposits (set height 3-37 cm). Intermediate aeolian deposits are characterized by interbedded crescentic dune, small draa (dune set height 5 cm-4.5 m) and interdune deposits, and rare fluvial and lake sediments. Basinal aeolian deposits are dominated by draa deposits (dune set height 0.2-28 m) associated with rare interdune sediments. Transverse dunes and draas were moved by north-eastern palaeowinds towards the foot of the alluvial fans. The aeolian sediments were deposited in a fault-bounded desert basin.  相似文献   

17.
Based on a detailed sedimentological analysis of Lower Triassic continental deposits in the western Germanic sag Basin (i.e. the eastern part of the present‐day Paris Basin: the ‘Conglomérat basal’, ‘Grès vosgien’ and ‘Conglomérat principal’ Formations), three main depositional environments were identified: (i) braided rivers in an arid alluvial plain with some preserved aeolian dunes and very few floodplain deposits; (ii) marginal erg (i.e. braided rivers, aeolian dunes and aeolian sand‐sheets); and (iii) playa lake (an ephemeral lake environment with fluvial and aeolian sediments). Most of the time, aeolian deposits in arid environments that are dominated by fluvial systems are poorly preserved and particular attention should be paid to any sedimentological marker of aridity, such as wind‐worn pebbles (ventifacts), sand‐drift surfaces and aeolian sand‐sheets. In such arid continental environments, stratigraphic surfaces of allocyclic origin correspond to bounding surfaces of regional extension. Elementary stratigraphic cycles, i.e. the genetic units, have been identified for the three main continental environments: the fluvial type, fluvial–aeolian type and fluvial/playa lake type. At the time scale of tens to hundreds of thousands of years, these high‐frequency cycles of climatic origin are controlled either by the groundwater level in the basin or by the fluvial siliciclastic sediment input supplied from the highland. Lower Triassic deposits from the Germanic Basin are preserved mostly in endoreic basins. The central part of the basin is arid but the rivers are supplied with water by precipitation falling on the remnants of the Hercynian (Variscan)–Appalachian Mountains. Consequently, a detailed study of alluvial plain facies provides indications of local climatic conditions in the place of deposition, whereas fluvial systems only reflect climatic conditions of the upstream erosional catchments.  相似文献   

18.
About half of the arid and semi-arid lands in the world are deserts that comprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes cover considerable areas of the Yulin desert and northern Jinbian. Sand dunes are moving in the main wind direction and converting some agricultural area to wasteland. Remote sensing of sand dunes helps in the understanding of aeolian process and desertification. Remote sensing data combined with field studies are valuable in studying sand dunes, regional aeolian depositional history. In particular, active and inactive sand dunes of the north Shaanxi Province were studied using remote sensing and geographic information system. In this study, we describe the Landsat thematic mapper (TM) images, covering north Shaanxi Province, which were used to study the distribution, shape, size, trends, density and movement of sand dunes and their effect on desertification of cultivated lands. Estimation was made depending on soil erodibility factor (Ⅰ) and local climatic factor (C) during the period (June to September). The result indicates that soil erosion caused sand drift of 8.957 5, 7.03 ton for Yulin and Jinbian, respectively. The mean sand dunes movement rate were 4.37, 3.11 m, whereas, monthly sand dune advance rate were 1.092 5, 0.777 5 m, for the two locations, respectively. The study reveals that cultivated lands extended obliquely to the direction of sand dune movement are extremely affected, while other segments that extend parallel to the direction of the movement are not affected. Accordingly the north Shaanxi Province was divided into areas of different classes of potential risk. Moreover, blown sands and sand movement from neighboring highlands also affect the area of western desert.  相似文献   

19.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

20.
A ground-penetrating radar survey of aeolian dunes in the Al Liwa area of Abu Dhabi reveals a variety of dipping reflectors which are interpreted as primary sedimentary structures. The interpretation of the radar profiles has been confirmed by bulldozing trenches through the study area and comparing logged sections in the trenches with the radar profiles. NNW— SSE-orientated radar profiles, approximately parallel to the prevailing wind direction, show two sets of dipping reflectors which are interpreted as sets of cross-stratification and second- and third-order bounding surfaces. Radar profiles orientated WSW—ENE across the prevailing wind direction are dominated by concave-up reflectors which are interpreted as trough-shaped scours and sets of trough cross-stratification produced by oblique progradation of barchanoid dunes. Nested troughs, with small sets of trough cross-stratification within larger troughs, may be due to reactivation following wind reversal, or the superposition of small dunes on larger dunes and the fill of large dune troughs by smaller dunes. Convex-upwards reflectors are interpreted as linear spurs on the convex portions of sinuous dunes or erosional remnants between troughs. Overall there is a tendency for the larger second-order bounding surfaces to dip downwind, which confirms Brookfield's ideas of the relative migration paths of dunes and draa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号