首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wintertime cold air outbreaks along a non-frozen sea channel or a long lake can become destructive if the related bands of heavy snowfall hit onto land. The forcing for such bands is studied with a 2D numerical model set across an east–west sea channel at 60oN (‘Gulf of Finland’), varying the basic geostrophic wind V g. Without any V g opposite coastal land breezes emerge with convergence. This results in a quasi-steady rising motion w max ~ 7.5 cm/s at 600 m in the middle of the gulf, which can force a snow band. During weak V g, the rising motion is reduced but least so for winds from 60o to 80o (~ENE), when modest alongshore bands could exist near the downstream (Estonian) coast. During V g of 4–6 m/s from any direction, the land breezes and rising motions are reduced more effectively, so snow bands are not expected during moderate basic flow. In contrast, during a strong V g of 20–25 m/s from 110o to 120o (~ESE) the land breeze perturbations are intense with w max up to 15–18 cm/s. The induced alongshore bands of heavy snowfall are located in these cases at the sea but quite close to the downstream (Finnish) coast. They can suddenly make a landfall if the basic wind turns clockwise.  相似文献   

2.
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.  相似文献   

3.
The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany; Ritten/Renon, Italy; Wetzstein, Germany; Norunda, Sweden). Existing data of net radiation were used as well as storage change rates calculated from temperature and humidity measurements to finally calculate the AE of all forest sites with uncertainty bounds. Data of the advection experiments MORE II (Tharandt) and ADVEX (Renon, Wetzstein, Norunda) served as the main basis. On-site data for referencing and cross-checking of the available energy were limited. Applied cross checks for net radiation (modelling, referencing to nearby stations and ratio of net radiation to global radiation) did not reveal relevant uncertainties. Heat storage of sensible heat J H, latent heat J E, heat storage of biomass J veg and heat storage due to photosynthesis J C were of minor importance during day but of some importance during night, where J veg turned out to be the most important one. Comparisons of calculated storage terms (J E, J H) at different towers of one site showed good agreement indicating that storage change calculated at a single point is representative for the whole canopy at sites with moderate heterogeneity. The uncertainty in AE was assessed on the basis of literature values and the results of the applied cross checks for net radiation. The absolute mean uncertainty of AE was estimated to be between 41 and 52 W m?2 (10–11 W m?2 for the sum of the storage terms J and soil heat flux G) during mid-day (approximately 12% of AE). At night, the absolute mean uncertainty of AE varied from 20 to about 30 W m?2 (approximately 6 W m?2 for J plus G) resulting in large relative uncertainties as AE itself is small. An inspection of the energy balance showed an improvement of closure when storage terms were included and that the imbalance cannot be attributed to the uncertainties in AE alone.  相似文献   

4.
Predictions of future climate change rely on models of how both environmental conditions and disturbance impact carbon cycling at various temporal and spatial scales. Few multi-year studies, however, have examined how carbon efflux is affected by the interaction of disturbance and interannual climate variation. We measured daytime soil respiration (R s) over five summers (June–September) in a Sierra Nevada mixed-conifer forest on undisturbed plots and plots manipulated with thinning, burning and their combination. We compared mean summer R s by year with seasonal precipitation. On undisturbed plots we found that winter precipitation (PPTw) explained between 77–96% of interannual variability in summer R s. In contrast, spring and summer precipitation had no significant effect on summer R s. PPTw is an important influence on summer R s in the Sierra Nevada because over 80% of annual precipitation falls as snow between October and April, thus greatly influencing the soil water conditions during the following growing season. Thinning and burning disrupted the relationship between PPTw and Rs, possibly because of significant increases in soil moisture and temperature as tree density and canopy cover decreased. Our findings suggest that R s in some moisture-limited ecosystems may be significantly influenced by annual snowpack and that management practices which reduce tree densities and soil moisture stress may offset, at least temporarily, the effect of predicted decreases in Sierran snowpack on R s.  相似文献   

5.
不同生育期水分胁迫对玉米光合特性的影响   总被引:6,自引:0,他引:6  
利用遮雨棚以夏玉米为对象进行水分胁迫大田试验,通过分析玉米叶片光合测量数据,研究不同生育期水分胁迫对玉米光合特性的影响,为定量分析不同水分胁迫程度对玉米生育的可能机理提供数据和初步的理论支持.结果表明:土壤水分下降会使玉米叶片的光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)降低,而胞间CO2浓度(Ci)和水分利用效率(WUE)会增加;Pn随着光照强度的增加而增加,且随着水分胁迫强度增强,Pn增加速率降低;干旱胁迫会改变Pn、Tr日变化规律,并且对拔节期光合作用的抑制小于成熟期;WUE与Pn存在极显著的正相关关系,与Tr、Ci及Gs存在显著的负相关关系.  相似文献   

6.
Measurements of the broadband global solar radiation (R S) and total ultraviolet radiation (the sum of UV-A and UV-B) were conducted from 2005 to 2010 at 9 sites in arid and semi-arid regions of China. These data were used to determine the temporal variability of UV and UV/R S and their dependence on the water vapor content and clearness index. The dependence of UV/R S on aerosol optical depth (AOD) and water vapor content was also investigated. In addition, a simple and efficient empirically model suited for all-weather conditions was developed to estimate UV from R s. The annual average daily UV level in arid and semi-arid areas is 0.61 and 0.59 MJ m?2 d?1, respectively. The highest value (0.66?±?0.25 MJ m?2 d?1) was recorded at an arid area at Linze. The lowest value (0.53?±?0.22 MJ m?2 d?1) was recorded at a semi-arid area at Ansai. The highest daily value of UV radiation was measured in May, whereas the lowest value was measured in December. The monthly variation of the UV/R s ratio ranged from 0.41 in Aksu to 0.35 in Qira. The monthly mean value of UV/R s gradually increased from November and then decreased in August. A small decreasing trend of UV/R s was observed in the arid and semi-arid regions due to recently increasing amounts of fine aerosol. A simple and efficient empirically model suit for all-weather condition was developed to estimate UV from R s. The slope a and intercept b of the regression line between the estimated and measured values were close to 1 and zero, respectively. The relative error between the estimated and measured values was less than 11.5%. Application of the model to data collected from different locations in this region also resulted in reasonable estimates of UV.  相似文献   

7.
A field experiment was conducted in a maize field in 2006 in an arid area of the Yellow River Basin in China. The daytime evapotranspiration (ETc) and soil evaporation beneath the maize canopy (E g) were measured by Bowen ratio energy balance method and micro-lysimeters, respectively. The results showed that the total ETc during maize growth season was 696 mm, and the maximum values occurred at about 90–140 days after sowing. The crop coefficient (K c), which was calculated from the ratio of ETc to reference evapotranspiration (ET0), was quite different from the values reported by other researchers in similar climate areas, with average values of 0.34, 0.47, 1.0 and 0.9 for initial, development, mid-season and late-season stages, respectively. High correlations between leaf area index (LAI) and average K c for every 4 days were obtained. The total E g was 201.4 mm with average values ranged from 0.92 to 2.05 for four growth stages of maize; and accounted for around 28.9 % of ETc. The ratio E g/ETc showed high negative relationship with LAI. These results were very important in precise management of irrigation for maize in Yellow River Basin areas.  相似文献   

8.
Atmospheric surface layer meteorological observations obtained from 20-m-high meteorological tower at Mangalore, situated along the west coast of India are used to estimate the surface layer scaling parameters of roughness length (z o) and drag coefficient (C D), surface layer fluxes of sensible heat and momentum. These parameters are computed using the simple flux–profile relationships under the framework of Monin–Obukhov (M–O) similarity theory. The estimated values of z o are higher (1.35–1.54 m) than the values reported in the literature (>0.4–0.9 m) probably due to the undulating topography surrounding the location. The magnitude of C D is high for low wind speed (<1.5 m s?1) and found to be in the range 0.005–0.03. The variations of sensible heat fluxes (SHF) and momentum fluxes are also discussed. Relatively high fluxes of heat and momentum are observed during typical days on 26–27 February 2004 and 10–11 April 2004 due to the daytime unstable atmospheric conditions. Stable or near neutral conditions prevail after 1700 h IST with negative SHF. A mesoscale model PSU/NCAR MM5 is run using a high-resolution (1 km) grid over the study region to examine the influence of complex topography on the surface layer parameters and the simulated fluxes are compared with estimated values. Spatial variations of the frictional velocity (u *), C D, surface fluxes, planetary boundary layer (PBL) height and surface winds are noticed according to the topographic variations in the simulation.  相似文献   

9.
A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s?1 < U 10 < 7 m s?1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s?1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s?1 < U 10 < 7 m s?1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s?1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.  相似文献   

10.
Air flow was observed above and within canopies of a number of kinds of soybeans. The Clark cultivar and two isolines of the Harosoy cultivar were studied in 1979 and 1980, respectively. Wind speed above the canopy was measured with cup anemometers. Heated thermistor anemometers were used to measure air flow within the canopy. Above-canopy air flow was characterized in terms of the zero-plane displacement (d), roughness parameter (z o) and drag coefficient (C d). d and z o were dependent on canopy height but were independent of friction velocity in the range 0.55 to 0.75 m s?1 · C d for the various canopies ranged from 0.027 to 0.035. Greater C d values were measured over an erectophile canopy than over a planophile canopy. C d was not measurably affected by differences in leaf pubescence. Within-canopy wind profiles were measured at two locations: within and between rows. The wind profile was characterized by a region of great wind shear in the upper canopy and by a region of relatively weak wind shear in the middle canopy. Considerable spatial variability in wind speed was evident, however. This result has significant implications for canopy flow modeling efforts aimed at evaluating transport in the canopy. In the lower canopy, wind speed within a row increased with depth whereas wind speed between two rows decreased with depth. The wind speeds at the two locations tended to converge to a common value at a height near 0.10 m. The attenuation of within-canopy air flow was stronger in canopies with greater foliage density. Canopy flow attenuation seemed to decrease with increasing wind speed, suggesting that high winds distorted the shape of the canopy in such a manner that the penetration of wind into the canopy increased.  相似文献   

11.
In this study, variations in carbon dioxide (CO2) fluxes resulting from gross primary production (GPP), net ecosystem exchange (NEE), and respiration (R e) of soybean (Glycine max L.) were investigated by the Eddy Covariance method during the growing period from June to November 2005 on an irrigated sand field at the Arid Land Research Center, Tottori University in Tottori, Japan. Although climatic conditions were humid and temperate, the soybeans required frequent irrigation because of the low water holding capacity of the sandy soil at the field site. Finally, it has been found that the accumulated NEE, GPP, and R e fluxes of soybean over 126 days amount to ?93, 319, and 226 gC m?2, respectively. Furthermore, the average ratio of GPP to R e was 1.4 and the average ratio of NEE to GPP was about ?0.29 for the growth period of soybean. Daily maximum NEE of ?3.8 gC m?2 occurred when LAI was 1.1.  相似文献   

12.
By using an ageostrophic shallow water model, it is pointed out that a kind of lateral boundary meso-scales jet can be established near the plateau or coast. The characteristic width of this kind of jet is proportional to the scale ofL c=L0(C0/Vg), whereL 0=C 0/f is the radius of Rossby deformation,C 0=(g * H)1/2 the speed of gravity wave and g* the reduced gravity. In general,L c is of the order of one hundred kilometes and tens of kilometers in the atmosphere and in the ocean respectively. The large-scale geostrophic current is an important background condition for forming this kind of jet. From this view point it seems that this kind of atmospheric meso-scale jet only occurs in late spring and summer in the eastern part of Asia, because there is a large-scale south monsoon over there. For the ocean, this kind of meso-scale jet seems to be a semi-persistant system and not to show a significant seasonal variation, and it can be established on both sides of the ocean.  相似文献   

13.
As photosynthetically active radiation (PAR) variability and PAR estimating methods play an important role in climate change and ecological process research, PAR variation trends and broadband global solar radiation (R s ) ratios (PAR/R s ) in the North China Plain (NCP) are examined using in situ PAR and R s observed data for 2005 to 2011. The annual average PAR value found in the NCP is 22.9 mol m?2 d?1. The highest and lowest values were recorded at Changwu and Luancheng sites, respectively. The highest PAR/R s value was found in Jiaozhouwan due to large water vapor volumes present in this area. PAR/R s levels have increased in the NCP due to a decrease in fine aerosols and increase in water vapor concentration. From these analysis results, a parameterization model that can be applied to all sky conditions was checked. Empirical estimation model comparisons for obtaining PAR values indicate that model was least accurate when R s was used independently. When the model included R s, the clearness index (K s) and the solar zenith angle, the model estimated PAR values with acceptable accuracy. A parameterization model was constructed by considering K s and attenuation factors of PAR under clear weather conditions (ρ clear). The improved parameterization model more accurately predicts values for local sites and for various observation sites.  相似文献   

14.
Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951–2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 T?g C, ranging from -80.5 to 79.6 T?g C yr-1. Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 T?g C which 14.2 T?g C was stored in vegetation and 42.4 T?g C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes.  相似文献   

15.
An integrated use of independent palaeoclimatological proxy techniques that reflect different components of the climate system provides a potential key for functional analysis of past climate changes. Here we report a 10,000 year quantitative record of annual mean temperature (T ann), based on pollen-climate transfer functions and pollen-stratigraphical data from Lake Flarken, south-central Sweden. The pollen-based temperature reconstruction is compared with a reconstruction of effective humidity, as reflected by a δ18O record obtained on stratigraphy of lacustrine carbonates from Lake Igelsjön, c. 10 km from Lake Flarken, which gives evidence of pronounced changes in effective humidity. The relatively low T ann, and high effective humidity as reflected by a low evaporation/inflow ratio suggest a maritime early Holocene climate (10,000–8,300 cal year BP), seemingly incompatible with the highly seasonal solar insolation configuration. We argue that the maritime climate was due to the stronger-than-present zonal flow, enhanced by the high early Holocene sea-surface temperatures in the North Atlantic. The maritime climate mode was disrupted by the abrupt cold event at 8,200 cal year BP, followed at 8,000 cal year BP by a stable Holocene Thermal Maximum. The latter was characterized by T ann values about 2.5°C higher than at present and markedly dry conditions, indicative of stable summer-time anti-cyclonic circulation, possibly corresponding with modern blocking anticyclonic conditions. The last 4,300 year period is characterized by an increasingly cold, moist, and unstable climate. The results demonstrate the value of combining two independent palaeoclimatic proxies in enhancing the reliability, generality, and interpretability of the palaeoclimatic results. Further methodological refinements especially in resolving past seasonal climatic contrasts are needed to better understand the role of different forcing factors in driving millennial-scale climate dynamics.  相似文献   

16.
Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400–500 ppm) and high CO2 (ca. 1200–1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5–3.0%) than that from oligotrophic waters (1.0–2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC 50 ), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as COlevels continue to rise.  相似文献   

17.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

18.
A coupled climate–carbon cycle model composed of a process-based terrestrial carbon cycle model, Sim-CYCLE, and the CCSR/NIES/FRCGC atmospheric general circulation model was developed. We examined the multiple temporal scale functions of terrestrial ecosystem carbon dynamics induced by human activities and natural processes and evaluated their contribution to fluctuations in the global carbon budget during the twentieth century. Global annual net primary production (NPP) and heterotrophic respiration (HR) increased gradually by 6.7 and 4.7%, respectively, from the 1900s to the 1990s. The difference between NPP and HR was the net carbon uptake by natural ecosystems, which was 0.6 Pg C year?1 in the 1980s, whereas the carbon emission induced by human land-use changes was 0.5 Pg C year?1, largely offsetting the natural terrestrial carbon sequestration. Our results indicate that monthly to interannual variation in atmospheric CO2 growth rate anomalies show 2- and 6-month time lags behind anomalies in temperature and the NiNO3 index, respectively. The simulated anomaly amplitude in monthly net carbon flux from terrestrial ecosystems to the atmosphere was much larger than in the prescribed air-to-sea carbon flux. Fluctuations in the global atmospheric CO2 time series were dominated by the activity of terrestrial vegetation. These results suggest that terrestrial ecosystems have acted as a net neutral reservoir for atmospheric CO2 concentrations during the twentieth century on an interdecadal timescale, but as the dominant driver for atmospheric CO2 fluctuations on a monthly to interannual timescale.  相似文献   

19.
A continental scale evaluation of Antarctic surface winds is presented from global ERA-40 and ERA-Interim reanalyses and RACMO2/ANT regional climate model at 55 and 27 km horizontal resolution, based on a comparison with observational data from 115 automatic weather stations (AWS). The Antarctic surface wind climate can be classified based on the Weibull shape factor k w . Very high values (k w  > 3) are found in the interior plateaus, typical of very uniform katabatic-dominated winds with high directional constancy. In the coast and all over the Antarctic Peninsula the shape factors are similar to the ones found in mid-latitudes (k w  < 3) typical of synoptically dominated wind climates. The Weibull shape parameter is systematically overpredicted by ERA reanalyses. This is partly corrected by RACMO2/ANT simulations which introduce more wind speed variability in complex terrain areas. A significant improvement is observed in the performance of ERA-Interim over ERA-40, with an overall decrease of 14 % in normalized mean absolute error. In escarpment and coastal areas, where the terrain gets rugged and katabatic winds are further intensified in confluence zones, ERA-Interim bias can be as high as 10 m s?1. These large deviations are partly corrected by the regional climate model. Given that RACMO2/ANT is an independent simulation of the near-surface wind speed climate, as it is not driven by observations, it compares very well to the ERA-Interim and AWS-115 datasets.  相似文献   

20.
An attempt is made to construct a model, coupling land surface and atmospheric processes in the planetary boundary layer (PBL). A grassland strip in a semi-desert (hereinafter called desert) is presupposed, so as to simulate the case of heterogeneous vegetation cover.Modeling results indicate that every term in the equation of the surface energy balance changes as the air flows over the grassland. The striking contrast of water and energy conditions between the grassland and the desert means that the air over the grassland is cooler and wetter than that over the desert. Consequently, in the heating and dynamic forcing of the air by the underlying surface, heterogeneities arise and are then transferred upward by the turbulent motions. Horizontal differences thus develop in the PBL, resulting in a local circulation. Meanwhile, the horizontal differences affect the free atmosphere through vertical motion at the top of the PBL.List of symbols d 1,d 2,d 3 depths of surface, middle and lower layers of soil - T c ,T 1,T 2,T 3 temperatures of canopy, surface, middle and lower layers of soil - R nc net radiation of canopy layer - c shielding factor of vegetation - Ew, Etc evaporation from wet fraction of foliage and transpiration from dry fraction of foliage - Et 1,Et 2 transpiration of foliage water absorbed by the root in the upper and lower soil, respectively - H c sensible heat of canopy - P c ,D c precipitation rate and drainage of canopy - C s ,C c ,C w heat capacity of soil, canopy and water - w , s density of water and air near the surface - D hydraulic permeability of soil - s saturated value of the ratio of volumetric soil moisture - S g , g solar radiation and surface reflection - H g ,R L g turbulent heat flux and long wave radiation of surface - P g ,E g precipitation rate and evaporation of soil surface - K s soil thermal diffusivity - K (m),K (H),K (q) eddy coefficients of momentum, heat and moisture - u, v, w components of wind speed in three directions - air potential temperature - e turbulent kinetic energy - p atmospheric pressure - C p specific heat of air under constant pressure - R d gas constant - u * friction velocity - * feature temperature - h height of the PBL - f Coriolis parameter - L 0 Monin-Obukhov length - latent heat of vaporization - q specific humidity - M c ,M cm interception water storage of canopy and its maximum - 0 Exner number of largescale background field - perturbation Exner number - u g ,v g components of the geostrophic wind speed Sponsored by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号